FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
ut fifteen square miles, the dam about 102 ft. high, with a breadth at the crest of 76 ft., and of the section shown in the diagram. The by-wash is cut in the solid rock altogether clear of the dam; the outlet culverts, however, are carried under the bank. We will now consider generally the methods employed in determining the site, dimensions, and methods of construction of reservoir dams adapted to the varying circumstances and requirements of modern times, with a few references to some of the more important works constructed or in progress, which it will be endeavored to make as concise and burdened with as few enumerations of dimensions as possible. The amount of the supply of water required, and the purposes to which it is to be applied, whether for household, manufacturing, or irrigation uses, are among the first considerations affecting the choice of the site of the reservoir, and is governed by the amount of rainfall available, after deducting for evaporation and absorption, and the nature of the surface soil and vegetation. The next important point is to determine the position of the dam, having regard to the suitability of the ground for affording a good foundation and the impoundment of the requisite body of water with the least outlay on embankment works. It has been suggested that the floods of the valley of the Thames might be controlled by a system of storage reservoirs, and notice was especially drawn to this in consequence of the heavy floods of the winter of 1875. From evidence given before the Royal Commission on Water Supply, previous to that date it was stated that a rainfall of 1 in. over the Thames basin above Kingston would give, omitting evaporation and absorption, a volume of 53,375,000,000 gallons. To prevent floods, a rainfall of at least 3 in. would have to be provided against, which would mean the construction of reservoirs of a storage capacity of say 160,000,000,000 gallons. Mr. Bailey Denton, in his evidence before that commission, estimated that reservoirs to store less than one tenth that quantity would cost L1,360,000, and therefore a 3 in. storage as above would require an outlay of, say, L15,000,000 sterling; and it will be seen that 3 in. is by no means too great a rainfall to allow for, as in July of 1875, according to Mr. Symons, at Cirencester, 3.11 in. fell within twenty-four hours. Supposing serious attention were to be given to such a scheme, there would, without doubt, b
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:

rainfall

 

floods

 

reservoirs

 

storage

 

dimensions

 

construction

 

important

 

outlay

 

reservoir

 
evaporation

amount
 

Thames

 

gallons

 
absorption
 

evidence

 

methods

 
consequence
 

winter

 
stated
 

system


prevent
 

notice

 

Commission

 

Kingston

 

omitting

 

previous

 

volume

 

Supply

 

commission

 

Cirencester


Symons

 

twenty

 

scheme

 
Supposing
 

attention

 

controlled

 

estimated

 
Denton
 

Bailey

 
capacity

require
 
sterling
 

quantity

 

provided

 

suitability

 

employed

 

determining

 

adapted

 
generally
 

varying