FREE BOOKS

Author's List




PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   >>   >|  
finite distance below AB', the locus for this quarter of the revolution being a curve A'G, to which C'R is an asymptote. After the crank pin passes C, the axis will be found above AB' and to the right of C'R, moving in a curve HB', which is the locus for the second quadrant. Since the path of P is symmetrical with respect to DE, the completion of the revolution will result in the formation of two other curves, continuous and symmetrical with those above described, the whole appearing as in Fig. 24, the vertical line through C' being a common asymptote. In order to find the radius of curvature at any point on the generated curve, it is necessary to find not only the location of the instantaneous axis, but its motion. This is done as shown in Fig. 25. P being the given point, CD is the corresponding position of the connecting rod, OC that of the crank. Draw through D a perpendicular to OD, produce OC to cut it in E, the instantaneous axis. Assume C A perpendicular to OC, as the motion of the crank. Then the point E in OC produced will have the motion EF perpendicular to OE, of a magnitude determined by producing OA to cut this perpendicular in F. But since the _intersection_ E of the crank produced is to be with a vertical line through the other end of the rod, the instantaneous axis has a motion which, so far as it depends upon the movement of C only, is in the direction DE. Therefore EF is a component, whose resultant EG is found by drawing FG perpendicular to EF. Now D is moving to the left with a velocity which may be determined either by drawing through A a perpendicular to CD, and through C a horizontal line to cut this perpendicular in H, or by making the angle DEI equal to the angle CEA, giving on DO the distance DI, equal to CH. Make EK = DI or CH, complete the rectangle KEGL, and its diagonal ES is, finally, the motion of the instantaneous axis. EP is the normal, and the actual motion of P is PM, perpendicular to EP, the angle PEM being made equal to CEA. Find now the component EN of the motion ES, which is perpendicular to EP. Draw NM and produce it to cut EP produced in R the center of curvature at P. This point evidently lies upon the branch _z_M of the evolute in Fig. 23. The process of finding one upon the other branch _x_N is shown in the lower part of the diagram, Fig. 25. The operations being exactly like those above described, will be readily traced by the reader without further explanation.
PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   >>   >|  



Top keywords:

perpendicular

 

motion

 

instantaneous

 

produced

 

curvature

 

determined

 

branch

 

drawing

 

produce

 
component

revolution
 

distance

 

moving

 
symmetrical
 

vertical

 

asymptote

 
diagonal
 

finally

 
actual
 

velocity


normal
 

horizontal

 

rectangle

 

quarter

 

giving

 

making

 

complete

 

diagram

 

operations

 

explanation


reader

 

readily

 

traced

 
finding
 

center

 

evidently

 

finite

 
process
 

evolute

 
resultant

completion
 
result
 

formation

 

position

 

connecting

 

respect

 

curves

 

appearing

 
radius
 

common