FREE BOOKS

Author's List




PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  
required to be flushed out, laborers passed through the gallery and broke down the timber barrier, the silt forming a wall sufficiently thick to resist the pressure of the water for the time being, and allow of the retreat of the Forlorn Hope--if the latter had luck--before giving way. One method adopted in Algeria, which has the advantage of permitting the sediment to be utilized together with the irrigation, this sediment being very fertilizing, is to pump air down through hose extending to the bottom of the reservoir, the pumps being actuated by steam power or turbine, and the sediment thus stirred up and run off with the water through the irrigation pipes. As an example of one of the early types of masonry dams in France, reference may be made to Fig. 13, on which is shown an elevation and cross section of the Lampy dam, forming a large reservoir for feeding the Languedoc canal. I will now refer to some of the most notable masonry dams in existence, commencing with France, where perhaps the finest is that known as the Furens, in connection with the St. Etienne Water Works, constructed between the years 1859-66, and designed by the engineers Graiff and Grandchamps. It is curved in plan, struck with a radius of 828 ft. from a center on the down stream side, and founded upon compact granite, the footings being carried down to a depth of 3 ft. 3 in. below the surface of the rock. It is of rubble masonry, in hydraulic mortar, carried up in courses of 5 ft. in depth. The height is 170 ft. on the up stream side and 184 ft. high on the lower side, with a breadth of 9 ft. 8 in. at the crest and 110 ft. at the base, and the cross section is so designed that the pressure is nearly constant in all parts, and nowhere exceeds 93 lb. to the square inch--13,392 lb. to the square foot. The contents is equal to 52,000 cubic yards of masonry, and the cost of erection was L36,080. The capacity of the reservoir is equal to 352,000,000 gallons. The reservoir discharges into two tunnels (see Fig. 11), driven one above the other through a hill into an adjacent valley. The lower tunnel contains three cast iron pipes, with a masonry stopping of 36 ft. long. Two of these pipes are 16 in. diameter, with regulating valves, and discharge into a well, from whence the water can be directed for the town supply or into the river. The third pipe, of 81/2 in. diameter, is always open, and serves to remove any deposit in the reservoir, and to f
PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  



Top keywords:

reservoir

 

masonry

 

sediment

 

section

 

irrigation

 
square
 

forming

 

carried

 

stream

 

France


diameter
 

designed

 

pressure

 

exceeds

 

contents

 

breadth

 

hydraulic

 
rubble
 

mortar

 

courses


surface

 

compact

 

granite

 

footings

 

height

 

constant

 
discharge
 
directed
 

valves

 
regulating

supply

 

remove

 

serves

 
deposit
 

stopping

 

founded

 

capacity

 

gallons

 
discharges
 

erection


tunnels

 

tunnel

 

valley

 

adjacent

 

driven

 

permitting

 
advantage
 
utilized
 

Algeria

 

method