FREE BOOKS

Author's List




PREV.   NEXT  
|<   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256  
257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   >>   >|  
pindle. About 1/2 in. from each end of this wire are soldered two smaller brass wires which in turn are soldered to a strip of light tin 1/4 in. wide and 2-5/8 in. long. The lower edge of this tin should be about 1/2 in. from the spindle. The pointer is soldered to the spindle 1/4 in. from one end. All of these parts should be brass with the exception of the strip of tin. Another strip of tin, the same size as the first, is soldered to two brass wires as shown in Fig. 4. These wires should be about 1 in. long. The spindle of the pointer swings freely between two bars of brass, G, 1/16 in. thick, 1/4 in. wide and 2-1/2 in. long. A small hole is countersunk in one of the bars to receive one end of the spindle and a hole 1/8 in. in diameter is drilled in the other and a thumb nut taken from the binding-post of an old battery soldered over the hole so the screw will pass through when turned into the nut. The end of the screw is countersunk to receive the other end of the spindle. A lock nut is necessary to fasten the screw when proper adjustment is secured. A hole is drilled in both ends of the bars for screws to fasten them in place. The bar with the adjusting screw is fastened on the back so it can be readily adjusted through the hole H, bored in the back. The pointer is bent so it will pass through the U-shaped cut-out and up back of the board B. A brass pin is driven in the board B to hold the pointer from dropping down too far to the left. Place the tin, Fig. 4, so it will just clear the tin, Fig. 5, and fasten in place. The magnet is next placed with the ends of the coil to the back and the top just clearing the tin strips. Two binding screws are fitted to the bottom of the back and connected to the extending wires from the coil. The instrument is now ready for calibrating. This is done by connecting it in series with another standard ammeter which has the scale marked in known quantities. In this series is also connected a variable resistance and a battery or some other source of current supply. The resistance is now adjusted to show .5 ampere on the standard ammeter and the position of the pointer marked on the scale. Change your resistance to all points and make the numbers until the entire scale is complete. When the current flows through the coil, the two tinned strips of metal are magnetized, and being magnetized by the same lines of force they are both of the same polarity. Like poles repel each other,
PREV.   NEXT  
|<   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256  
257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   >>   >|  



Top keywords:

spindle

 

pointer

 
soldered
 

fasten

 

resistance

 
binding
 

battery

 

strips

 

standard

 

series


ammeter

 

marked

 
magnetized
 

current

 
adjusted
 
connected
 
screws
 

receive

 

countersunk

 

drilled


smaller

 

quantities

 
variable
 

bottom

 

fitted

 

extending

 
instrument
 

connecting

 

calibrating

 

source


pindle

 

tinned

 

polarity

 

complete

 

entire

 

ampere

 

position

 
supply
 

clearing

 

Change


numbers

 

points

 
swings
 
secured
 

adjustment

 

freely

 

proper

 
adjusting
 

fastened

 

diameter