FREE BOOKS

Author's List




PREV.   NEXT  
|<   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261  
262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   >>   >|  
g attachment for the lathe as shown in Fig. 3. The gear on the crankshaft has 20 teeth meshing into a 40-tooth gear on the cam shaft. The main part of the frame consists of a piece of 1/2-in. square iron, 30 in. long, bent in the shape of a U, and on the outside of this piece is riveted a bent piece of sheet metal 1/8 in. thick and 3 in. wide. The U-shaped iron is placed near one edge of the sheet metal. Two pieces of 2-1/2-in. angle iron are riveted vertically on the ends of the U-shaped iron and a plate riveted on them to close the open end and to form a face on which to attach the cylinder with bolts or cap screws. A hole was cut through the angle irons and plate the same size as the bore of the cylinder so the piston could be taken out without removing the cylinder. A 1-in. angle iron was riveted to one side of the finished frame to make a support for the crankshaft bearing. The rough frame, Fig. 4, was then finished on an emery wheel. This long frame had to be made to accommodate the crosshead which was necessary for such a short cylinder. The piston and rod were screwed together and turned in one operation on a lathe. The three rings were made from an old cast-iron pulley. The cap screws were made from steel pump rods. A piece of this rod was centered in a lathe and turned so as to shape six or more screws, Fig. 5, then removed and the first one threaded and cut off, then the second and so on until all of them were made into screws. The rod was held in a vise for this last operation. Studs were made by threading both ends of a proper length rod. Make-and-break ignition is used on the engine; however, a jump spark would be much better. The flywheel and mixing valve were purchased from a house dealing in these parts. The water jacket on the cylinder is a sheet of copper formed and soldered in place, and brass bands put on to co v e r the soldered joints. --Contributed by Peter Johnson, Clermont, Iowa. ** Dripping Carburetor [208] If gasoline drips from the carburetor when the engine is not running, the needle valve connected with the float should be investigated. If the dripping stops when the valve is pressed down, the float is too high. If the valve keeps dripping, then it should be ground to a fit. ** A Merry-Go-Round Thriller [209] [Illustration: Swinging on the Merry-Go-Round] As a home mechanic with a fondness for amusing the children I have seen many descriptions of merry-go-rounds
PREV.   NEXT  
|<   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261  
262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   >>   >|  



Top keywords:

cylinder

 

riveted

 
screws
 

dripping

 

turned

 
finished
 

crankshaft

 

piston

 

soldered

 

operation


shaped

 

engine

 
rounds
 

length

 
formed
 
proper
 
ignition
 

mixing

 

flywheel

 

purchased


dealing

 

jacket

 
copper
 

gasoline

 

pressed

 

mechanic

 
investigated
 

Illustration

 

Swinging

 

Thriller


ground

 

fondness

 

amusing

 

Dripping

 

Carburetor

 

Clermont

 

Johnson

 
joints
 

Contributed

 

needle


descriptions

 

connected

 
running
 
children
 

carburetor

 

screwed

 

vertically

 
pieces
 

attach

 

meshing