g
attachment for the lathe as shown in Fig. 3. The gear on the
crankshaft has 20 teeth meshing into a 40-tooth gear on the cam
shaft.
The main part of the frame consists of a piece of 1/2-in. square
iron, 30 in. long, bent in the shape of a U, and on the outside of
this piece is riveted a bent piece of sheet metal 1/8 in. thick
and 3 in. wide. The U-shaped iron is placed near one edge of the
sheet metal. Two pieces of 2-1/2-in. angle iron are riveted
vertically on the ends of the U-shaped iron and a plate riveted on
them to close the open end and to form a face on which to attach
the cylinder with bolts or cap screws. A hole was cut through the
angle irons and plate the same size as the bore of the cylinder so
the piston could be taken out without removing the cylinder. A
1-in. angle iron was riveted to one side of the finished frame to
make a support for the crankshaft bearing. The rough frame, Fig.
4, was then finished on an emery wheel. This long frame had to be
made to accommodate the crosshead which was necessary for such a
short cylinder.
The piston and rod were screwed together and turned in one
operation on a lathe. The three rings were made from an old
cast-iron pulley. The cap screws were made from steel pump rods. A
piece of this rod was centered in a lathe and turned so as to
shape six or more screws, Fig. 5, then removed and the first one
threaded and cut off, then the second and so on until all of them
were made into screws. The rod was held in a vise for this last
operation. Studs were made by threading both ends of a proper
length rod. Make-and-break ignition is used on the engine;
however, a jump spark would be much better. The flywheel and
mixing valve were purchased from a house dealing in these parts.
The water jacket on the cylinder is a sheet of copper formed and
soldered in place, and brass bands put on to co v e r the soldered
joints.
--Contributed by Peter Johnson, Clermont, Iowa.
** Dripping Carburetor [208]
If gasoline drips from the carburetor when the engine is not
running, the needle valve connected with the float should be
investigated. If the dripping stops when the valve is pressed
down, the float is too high. If the valve keeps dripping, then it
should be ground to a fit.
** A Merry-Go-Round Thriller [209]
[Illustration: Swinging on the Merry-Go-Round]
As a home mechanic with a fondness for amusing the children I have
seen many descriptions of merry-go-rounds
|