FREE BOOKS

Author's List




PREV.   NEXT  
|<   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176  
177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   >>   >|  
and beg the question in the course of one and the same argument. [Footnote 1: Cp. Mr. Sidgwick's instructive treatise on Fallacies, International Scientific Series, p. 199.] CHAPTER IX. FORMAL OR ARISTOTELIAN INDUCTION.--INDUCTIVE ARGUMENT. The distinction commonly drawn between Deduction and Induction is that Deduction is reasoning from general to particular, and Induction reasoning from particular to general. But it is really only as modes of argumentation that the two processes can be thus clearly and fixedly opposed. The word Induction is used in a much wider sense when it is the title of a treatise on the Methods of Scientific Investigation. It is then used to cover all the processes employed in man's search into the system of reality; and in this search deduction is employed as well as induction in the narrow sense. We may call Induction in the narrow sense Formal Induction or Inductive Argument, or we may simply call it Aristotelian Induction inasmuch as it was the steps of Inductive argument that Aristotle formulated, and for which he determined the conditions of validity. Let us contrast it with Deductive argument. In this the questioner's procedure is to procure the admission of a general proposition with a view to forcing the admission of a particular conclusion which is in dispute. In Inductive argument, on the other hand, it is a general proposition that is in dispute, and the procedure is to obtain the admission of particular cases with a view to forcing the admission of this general proposition. Let the question be whether All horned animals ruminate. You engage to make an opponent admit this. How do you proceed? You ask him whether he admits it about the various species. Does the ox ruminate? The sheep? The goat? And so on. The bringing in of the various particulars is the induction ([Greek: epagoge]). When is this inductive argument complete? When is the opponent bound to admit that all horned animals ruminate? Obviously, when he has admitted it about every one. He must admit that he has admitted it about every one, in other words, that the particulars enumerated constitute the whole, before he can be held bound in consistency to admit it about the whole. The condition of the validity of this argument is ultimately the same with that of Deductive argument, the identity for purposes of predication of a generic whole with the sum of its constituent parts. The Axiom o
PREV.   NEXT  
|<   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176  
177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   >>   >|  



Top keywords:

argument

 

Induction

 

general

 
admission
 
ruminate
 

proposition

 

Inductive

 
induction
 

opponent

 

admitted


question

 

narrow

 

search

 
particulars
 

employed

 

treatise

 

processes

 
reasoning
 

dispute

 
procedure

Deduction

 
Deductive
 

horned

 

animals

 
forcing
 

Scientific

 

validity

 

proceed

 

engage

 

obtain


condition

 

ultimately

 

identity

 

consistency

 
constitute
 

purposes

 
predication
 
constituent
 
generic
 

enumerated


conclusion

 

admits

 

species

 
bringing
 

Obviously

 

complete

 

inductive

 
epagoge
 

conditions

 
argumentation