FREE BOOKS

Author's List




PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  
will give 50 horsepower. Generally speaking, eight cylinders, the bore, stroke and speed being the same, will give double the power that can be obtained from four, but this does not always hold good. Just why this exception should occur is not explainable by any accepted rule. Horse Power and Speed. Speed is an important requisite in a flying-machine motor, as the velocity of the aeroplane is a vital factor in flotation. At first thought, the propeller and similar adjuncts being equal, the inexperienced mind would naturally argue that a 50-horsepower engine should produce just double the speed of one of 25-horsepower. That this is a fallacy is shown by actual performances. The Wrights, using a 25-horsepower motor, have made 44 miles an hour, while Bleriot, with a 50-horsepower motor, has a record of a short-distance flight at the rate of 52 miles an hour. The fact is that, so far as speed is concerned, much depends upon the velocity of the wind, the size and shape of the aeroplane itself, and the size, shape and gearing of the propeller. The stronger the wind is blowing the easier it will be for the aeroplane to ascend, but at the same time the more difficult it will be to make headway against the wind in a horizontal direction. With a strong head wind, and proper engine force, your machine will progress to a certain extent, but it will be at an angle. If the aviator desired to keep on going upward this would be all right, but there is a limit to the altitude which it is desirable to reach--from 100 to 500 feet for experts--and after that it becomes a question of going straight ahead. Great Waste of Power. One thing is certain--even in the most efficient of modern aerial motors there is a great loss of power between the two points of production and effect. The Wright outfit, which is admittedly one of the most effective in use, takes one horsepower of force for the raising and propulsion of each 50 pounds of weight. This, for a 25-horsepower engine, would give a maximum lifting capacity of 1250 pounds. It is doubtful if any of the higher rated motors have greater efficiency. As an 8-cylinder motor requires more fuel to operate than a 4-cylinder, it naturally follows that it is more expensive to run than the smaller motor, and a normal increase in capacity, taking actual performances as a criterion, is lacking. In other words, what is the sense of using an 8-cylinder motor when one of 4 cylinders is sufficient?
PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  



Top keywords:
horsepower
 

cylinder

 

engine

 

aeroplane

 

pounds

 

actual

 
performances
 
double
 
capacity
 

naturally


propeller

 

motors

 

cylinders

 
machine
 

velocity

 

efficient

 

modern

 

sufficient

 

aerial

 

straight


taking

 

smaller

 

normal

 

upward

 
expensive
 

altitude

 

experts

 

desirable

 
question
 

lifting


maximum

 

criterion

 
lacking
 

weight

 
doubtful
 

efficiency

 

greater

 

higher

 
requires
 

effect


Wright
 
outfit
 

production

 

points

 

admittedly

 

effective

 
raising
 

propulsion

 

increase

 

operate