FREE BOOKS

Author's List




PREV.   NEXT  
|<   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83  
84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   >>   >|  
in sq. feet power per lb. Santos-Dumont.. 350 110.00 30 0.314 Bleriot..... 700 150.00 25 0.214 Antoinette.... 1,200 538.00 50 0.448 Curtiss..... 700 258.00 60 0.368 Wright.....[4] 1,100 538.00 25 0.489 Farman...... 1,200 430.00 50 0.358 Voisin...... 1,200 538.00 50 0.448 While the average supporting surface is in favor of the aeroplane, this is more than overbalanced by the greater amount of horsepower required for the weight lifted. The average supporting surface in birds is about three-quarters of a square foot per pound. In the average aeroplane it is about one-half square foot per pound. On the other hand the average aeroplane has a lifting capacity of 24 pounds per horsepower, while the buzzard, for instance, lifts 5 pounds with 15-100 of a horsepower. If the Wright machine--which has a lifting power of 50 pounds per horsepower--should be alone considered the showing would be much more favorable to the aeroplane, but it would not be a fair comparison. More Surface, Less Power. Broadly speaking, the larger the supporting area the less will be the power required. Wright, by the use of 538 square feet of supporting surface, gets along with an engine of 25 horsepower. Curtiss, who uses only 258 square feet of surface, finds an engine of 50 horsepower is needed. Other things, such as frame, etc., being equal, it stands to reason that a reduction in the area of supporting surface will correspondingly reduce the weight of the machine. Thus we have the Curtiss machine with its 258 square feet of surface, weighing only 600 pounds (without operator), but requiring double the horsepower of the Wright machine with 538 square feet of surface and weighing 1,100 pounds. This demonstrates in a forceful way the proposition that the larger the surface the less power will be needed. But there is a limit, on account of its bulk and awkwardness in handling, beyond which the surface area cannot be enlarged. Otherwise it might be possible to equip and operate aeroplanes satisfactorily with engines of 15 horsepower, or even less. The Fuel Consumption Problem. Fuel consumption is a prime factor in the production of engine power. The veriest mechanical tyro knows in a general way that the more power is secured the more fuel must be consumed,
PREV.   NEXT  
|<   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83  
84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   >>   >|  



Top keywords:

surface

 
horsepower
 
square
 

supporting

 
pounds
 
Wright
 
machine
 

aeroplane

 

average

 

Curtiss


engine
 

required

 

weight

 

weighing

 
needed
 
larger
 

lifting

 

double

 

operator

 
things

requiring
 

reduction

 

correspondingly

 

reason

 
stands
 

reduce

 

Problem

 
consumption
 

factor

 
Consumption

satisfactorily
 

engines

 

production

 

veriest

 

consumed

 
secured
 

general

 

mechanical

 

aeroplanes

 
operate

account

 

demonstrates

 

forceful

 

proposition

 
awkwardness
 

Otherwise

 

enlarged

 
handling
 

showing

 

Voisin