FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  
stable currents will be found from 50 to 100 feet from the earth, provided the wind is not diverted by such objects as trees, rocks, etc. That there are equally stable currents higher up is true, but they are generally to be found at excessive altitudes. How a Bird Meets Currents. Observe a bird in action on a windy day and you will find it continually changing the position of its wings. This is done to meet the varying gusts and eddies of the air so that sustentation may be maintained and headway made. One second the bird is bending its wings, altering the angle of incidence; the next it is lifting or depressing one wing at a time. Still again it will extend one wing tip in advance of the other, or be spreading or folding, lowering or raising its tail. All these motions have a meaning, a purpose. They assist the bird in preserving its equilibrium. Without them the bird would be just as helpless in the air as a human being and could not remain afloat. When the wind is still, or comparatively so, a bird, having secured the desired altitude by flight at an angle, may sail or soar with no wing action beyond an occasional stroke when it desires to advance. But, in a gusty, uncertain wind it must use its wings or alight somewhere. Trying to Imitate the Bird. Writing in _Fly_, Mr. William E. White says: "The bird's flight suggests a number of ways in which the equilibrium of a mechanical bird may be controlled. Each of these methods of control may be effected by several different forms of mechanism. "Placing the two wings of an aeroplane at an angle of three to five degrees to each other is perhaps the oldest way of securing lateral balance. This way readily occurs to anyone who watches a sea gull soaring. The theory of the dihedral angle is that when one wing is lifted by a gust of wind, the air is spilled from under it; while the other wing, being correspondingly depressed, presents a greater resistance to the gust and is lifted restoring the balance. A fixed angle of three to five degrees, however, will only be sufficient for very light puffs of wind and to mount the wings so that the whole wing may be moved to change the dihedral angle presents mechanical difficulties which would be better avoided. "The objection of mechanical impracticability applies to any plan to preserve the balance by shifting weight or ballast. The center of gravity should be lower than the center of the supporting surfaces, but
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  



Top keywords:

mechanical

 
balance
 
center
 

equilibrium

 
presents
 
lifted
 
degrees
 

advance

 

currents

 

dihedral


action
 

flight

 

stable

 

Placing

 
Writing
 
alight
 

aeroplane

 

securing

 

mechanism

 
oldest

Trying
 

Imitate

 

controlled

 

lateral

 
suggests
 

number

 

methods

 
control
 

William

 
effected

sufficient
 

preserve

 

restoring

 

shifting

 

difficulties

 
avoided
 

objection

 

applies

 

change

 
weight

ballast

 

watches

 

impracticability

 

readily

 
occurs
 

supporting

 

soaring

 
correspondingly
 

depressed

 

greater