FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  
stable currents will be found from 50 to 100 feet from the earth, provided the wind is not diverted by such objects as trees, rocks, etc. That there are equally stable currents higher up is true, but they are generally to be found at excessive altitudes. How a Bird Meets Currents. Observe a bird in action on a windy day and you will find it continually changing the position of its wings. This is done to meet the varying gusts and eddies of the air so that sustentation may be maintained and headway made. One second the bird is bending its wings, altering the angle of incidence; the next it is lifting or depressing one wing at a time. Still again it will extend one wing tip in advance of the other, or be spreading or folding, lowering or raising its tail. All these motions have a meaning, a purpose. They assist the bird in preserving its equilibrium. Without them the bird would be just as helpless in the air as a human being and could not remain afloat. When the wind is still, or comparatively so, a bird, having secured the desired altitude by flight at an angle, may sail or soar with no wing action beyond an occasional stroke when it desires to advance. But, in a gusty, uncertain wind it must use its wings or alight somewhere. Trying to Imitate the Bird. Writing in _Fly_, Mr. William E. White says: "The bird's flight suggests a number of ways in which the equilibrium of a mechanical bird may be controlled. Each of these methods of control may be effected by several different forms of mechanism. "Placing the two wings of an aeroplane at an angle of three to five degrees to each other is perhaps the oldest way of securing lateral balance. This way readily occurs to anyone who watches a sea gull soaring. The theory of the dihedral angle is that when one wing is lifted by a gust of wind, the air is spilled from under it; while the other wing, being correspondingly depressed, presents a greater resistance to the gust and is lifted restoring the balance. A fixed angle of three to five degrees, however, will only be sufficient for very light puffs of wind and to mount the wings so that the whole wing may be moved to change the dihedral angle presents mechanical difficulties which would be better avoided. "The objection of mechanical impracticability applies to any plan to preserve the balance by shifting weight or ballast. The center of gravity should be lower than the center of the supporting surfaces, but
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  



Top keywords:

mechanical

 
balance
 

center

 
equilibrium
 

presents

 

lifted

 

degrees

 

advance

 

currents

 

dihedral


action

 

flight

 
stable
 

Placing

 

Writing

 

alight

 
aeroplane
 

securing

 
mechanism
 

oldest


Trying
 

Imitate

 

controlled

 

lateral

 

suggests

 

number

 

methods

 

control

 

William

 

effected


sufficient

 

preserve

 

restoring

 
shifting
 
difficulties
 

avoided

 

objection

 
applies
 

change

 

weight


ballast

 

watches

 

impracticability

 

readily

 

occurs

 
supporting
 

soaring

 
correspondingly
 

depressed

 

greater