FREE BOOKS

Author's List




PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  
of 50 miles an hour. This is an equivalent of about 134 pounds per horsepower. For an average modern flying machine, with a total load, machine and passengers, of 1,200 pounds, and equipped with a 50-horsepower engine, 50 miles an hour is the maximum. Here we have the equivalent of exactly 24 pounds per horsepower. Why this great difference? No less an authority than Mr. Octave Chanute answers the question in a plain, easily understood manner. He says: "In the case of an automobile the ground furnishes a stable support; in the case of a flying machine the engine must furnish the support and also velocity by which the apparatus is sustained in the air." Pressure of the Wind. Air pressure is a big factor in the matter of aeroplane horsepower. Allowing that a dead calm exists, a body moving in the atmosphere creates more or less resistance. The faster it moves, the greater is this resistance. Moving at the rate of 60 miles an hour the resistance, or wind pressure, is approximately 50 pounds to the square foot of surface presented. If the moving object is advancing at a right angle to the wind the following table will give the horsepower effect of the resistance per square foot of surface at various speeds. Horse Power Miles per Hour per sq. foot 10 0.013 15 0 044 20 0.105 25 0.205 30 0.354 40 0.84 50 1.64 60 2.83 80 6.72 100 13.12 While the pressure per square foot at 60 miles an hour, is only 1.64 horsepower, at 100 miles, less than double the speed, it has increased to 13.12 horsepower, or exactly eight times as much. In other words the pressure of the wind increases with the square of the velocity. Wind at 10 miles an hour has four times more pressure than wind at 5 miles an hour. How to Determine Upon Power. This element of air resistance must be taken into consideration in determining the engine horsepower required. When the machine is under headway sufficient to raise it from the ground (about 20 miles an hour), each square foot of surface resistance, will require nearly nine-tenths of a horsepower to overcome the wind pressure, and propel the machine through the air. As shown in the table the ratio of power required increases rapidly as
PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  



Top keywords:

horsepower

 

resistance

 

pressure

 
machine
 

square

 
pounds
 

surface

 

engine

 
ground
 
support

velocity

 

increases

 
moving
 
equivalent
 
flying
 

required

 

overcome

 

tenths

 

rapidly

 
propel

require

 
Determine
 

determining

 

element

 

consideration

 

double

 
sufficient
 
headway
 

increased

 

object


automobile

 

furnishes

 

manner

 

easily

 

understood

 

stable

 

furnish

 
sustained
 

passengers

 

Pressure


apparatus
 

question

 
maximum
 
difference
 
Octave
 

Chanute

 

answers

 
equipped
 
authority
 

approximately