FREE BOOKS

Author's List




PREV.   NEXT  
|<   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111  
112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   >>  
miles an hour (8.80 feet per second), then we have as the trend of the "relative wind" encountered: 6 -- = 0.353, or the tangent of 19 degrees 26'. 17 which brings the case into the category of rising wind effects. But the bird was observed to have a negative angle to the horizon of about 3 degrees, as near as could be guessed, so that his angle of incidence to the "relative wind" was reduced to 16 degrees 26'. The relative speed of his soaring was therefore: Velocity = square root of (17 squared + 6 squared) = 18.03 miles per hour. At this speed, using the Langley co-efficient recently practically confirmed by the accurate experiments of Mr. Eiffel, the air pressure would be: 18.03 squared X 0.00327 = 1.063 pounds per square foot. If we apply Lilienthal's co-efficients for an angle of 6 degrees 26', we have for the force in action: Normal: 4.57 X 1.063 X 0.912 = 4.42 pounds. Tangential: 4.57 X 1.063 X 0.074 = - 0.359 pounds, which latter, being negative, is a propelling force. Results Astonish Scientists. Thus we have a bird weighing 4.25 pounds not only thoroughly supported, but impelled forward by a force of 0.359 pounds, at seventeen miles per hour, while the experiments of Professor A. F. Zahm showed that the resistance at 15.52 miles per hour was only 0.27 pounds, 17 squared or 0.27 X ------- = 0.324 pounds, at seventeen miles an 15.52 squared hour. These are astonishing results from the data obtained, and they lead to the inquiry whether the energy of the rising air is sufficient to make up the losses which occur by reason of the resistance and friction of the bird's body and wings, which, being rounded, do not encounter air pressures in proportion to their maximum cross-section. We have no accurate data upon the co-efficients to apply and estimates made by myself proved to be much smaller than the 0.27 pounds resistance measured by Professor Zahm, so that we will figure with the latter as modified. As the speed is seventeen miles per hour, or 24.93 feet per second, we have for the work: Work done, 0.324 X 24.93 = 8.07 foot pounds per second. Endorsed by Prof. Marvin. Corresponding energy of rising air is not sufficient at four miles per hour. This amounts to but 2.10 foot pounds per second, but if we assume that the air was rising at the rate of seven miles per hour (10.26 feet per second), at which the pressur
PREV.   NEXT  
|<   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111  
112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   >>  



Top keywords:

pounds

 
squared
 

degrees

 
rising
 

seventeen

 

relative

 

resistance

 

accurate

 

experiments

 

efficients


energy

 

sufficient

 
Professor
 

square

 

negative

 

encounter

 
pressures
 

rounded

 
pressur
 

proportion


section
 

maximum

 

friction

 

inquiry

 

tangent

 

obtained

 

encountered

 

reason

 

losses

 

estimates


Endorsed

 

assume

 

amounts

 
Corresponding
 
Marvin
 

smaller

 

proved

 
measured
 

modified

 

figure


reduced

 

incidence

 

Lilienthal

 

soaring

 

action

 
Normal
 

guessed

 
Tangential
 

Langley

 

confirmed