FREE BOOKS

Author's List




PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  
oms of hydrogen capable of being replaced by metals, and when such hydrogen atoms are completely replaced by metals, there result so-called neutral or normal salts, that is, neutral substances having no action on litmus solution. These salts can also be produced by the union of acids with equivalent quantities of certain metallic oxides or hydroxides, called bases, of which those soluble in water are termed alkalis. Alkalis have a caustic taste, and turn red litmus solution blue. In order to explain what is called the law of equivalence, I will remind you of the experiment of the previous lecture, when a piece of bright iron, being placed in a solution of copper sulphate, became coated with metallic copper, an equivalent weight of iron meanwhile suffering solution as sulphate of iron. According to the same law, a certain weight of soda would always require a certain specific equivalent weight of an acid, say hydrochloric acid, to neutralise its alkaline or basic properties, producing a salt. The specific gravities of acids and alkalis in solution are made use of in works, etc., as a means of ascertaining their strengths and commercial values. Tables have been carefully constructed, such that for every degree of specific gravity a corresponding percentage strength of acidity and alkalinity may be looked up. The best tables for this purpose are given in Lunge and Hurter's _Alkali-Makers' Pocket-Book_, but for ordinary purposes of calculation in the works or factory, a convenient relationship exists in the case of hydrochloric acid between specific gravity and percentage of real acid, such that specific gravity as indicated by Twaddell's hydrometer directly represents percentage of real acid in any sample of hydrochloric acid. The point at which neutralisation of an acid by alkali or _vice versa_ just takes place is ascertained very accurately by the use of certain sensitive colours. At first litmus and cochineal tinctures were used, but in testing crude alkalis containing alumina and iron, it was found that lakes were formed with these colours, and they become precipitated in the solution, and so no longer sensitive. The chemist was then obliged to resort to certain sensitive coal-tar colours, which did not, as the dyer and printer knew, form lakes with alumina and iron, such as methyl orange, fluorescein, Congo red, phenolphthalein, and so forth. For determining the alkalimetric strength of commercial sodas, a known
PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  



Top keywords:
solution
 

specific

 
litmus
 

gravity

 
sensitive
 
called
 
weight
 

hydrochloric

 

colours

 

percentage


alkalis

 

equivalent

 

alumina

 

strength

 

commercial

 

copper

 

sulphate

 

neutral

 

hydrogen

 

replaced


metals

 

metallic

 

sample

 

neutralisation

 
ascertained
 
accurately
 

represents

 

alkali

 

Twaddell

 

Pocket


ordinary

 
Makers
 
Alkali
 

Hurter

 

completely

 

purposes

 

calculation

 

hydrometer

 

exists

 
factory

convenient
 
relationship
 

directly

 

cochineal

 
printer
 

methyl

 

orange

 

fluorescein

 

alkalimetric

 
determining