FREE BOOKS

Author's List




PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   >>  
regulated slit. Now all solid and liquid bodies when raised to a white heat give a continuous spectrum, one like the prismatic band already described, and one not interrupted by any dark lines or bands. The rays emitted from the white-hot substance of the sun have to pass, before reaching our earth, through the sun's atmosphere, and since the light emitted from any incandescent body is absorbed on passing through the vapour of that substance, and since the sun is surrounded by such an atmosphere of the vapours of various metals and substances, hence we have, on examining the sun's spectrum, instead of coloured bands or lines only, many dark ones amongst them, which are called Fraunhofer's lines. Ordinary incandescent vapours from highly heated substances give discontinuous spectra, _i.e._ spectra in which the rays of coloured light are quite limited, and they appear in the spectroscope only as lines of the breadth of the slit. These are called line-spectra, and every chemical element possesses in the incandescent gaseous state its own characteristic lines of certain colour and certain refrangibility, by means of which that element can be recognised. To observe this you place a Bunsen burner opposite the slit of the spectroscope, and introduce into its colourless flame on the end of a platinum wire a little of a volatile salt of the metal or element to be examined. The flame of the lamp itself is often coloured with a distinctiveness that is sufficient for a judgment to be made with the aid of the naked eye alone, as to the metal or element present. Thus soda and its salts give a yellow flame, which is absolutely yellow or monochromatic, and if you look through your prism or spectroscope at it, you do not see a coloured rainbow band or spectrum, as with daylight or gaslight, but only one yellow double line, just where the yellow would have been if the whole spectrum had been represented. I think it is now plain that for the sake of observations and exact discrimination, it is necessary to map out our spectrum, and accordingly, in one of the tubes, the third, the spectroscope is provided with a graduated scale, so adjusted that when we look at the spectrum we also see the graduations of the scale, and so our spectrum is mapped; the lines marked out and named with the large and small letters of the alphabet, are certain of the prominent Fraunhofer's lines (see A, B, C, a, d, etc., Fig. 16). We speak, for example, of the
PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   >>  



Top keywords:

spectrum

 

element

 

coloured

 
spectroscope
 
yellow
 

incandescent

 

spectra

 

Fraunhofer

 
vapours
 

called


substances
 

emitted

 

substance

 

atmosphere

 

monochromatic

 

absolutely

 

prominent

 

rainbow

 
sufficient
 

judgment


distinctiveness

 

present

 

daylight

 

alphabet

 

observations

 

graduations

 

discrimination

 

marked

 

mapped

 

adjusted


double

 

letters

 
gaslight
 

provided

 

represented

 

graduated

 

surrounded

 
vapour
 
absorbed
 

passing


metals

 
Ordinary
 

highly

 

examining

 
reaching
 
bodies
 

raised

 

liquid

 

regulated

 

continuous