FREE BOOKS

Author's List




PREV.   NEXT  
|<   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104  
105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   >>  
th this paint be heated to about 150 deg. F., the paint at once turns chocolate brown, but it is the same chemical substance, for on cooling we get the colour back again, and this can be repeated any number of times. Thus we see that it is the peculiar physical structure of bodies which appear coloured that has a certain effect upon the light, and hence it must be from the light itself that colour really emanates. Originally all colour proceeds from the source of light, though it seems to come to the eye from the apparently coloured objects. But without some elucidation this statement would appear as an enigma, since it might be urged that the light of the sun as well as that of artificial light is white, and not coloured. I hope, however, to show you that that light is white, because it is so much coloured, so variously and evenly coloured, though I admit the term "coloured" here is used in a special sense. White light contains and is made up of all the differently coloured rainbow rays, which are continually vibrating, and whose wave-lengths and number of vibrations distinguish them from each other. We will take some white light from an electric lantern and throw it on a screen. In a prism of glass we have a simple instrument for unravelling those rays, and instead of letting them all fall on the same spot and illumine it with a white light, it causes them to fall side by side; in fact they all fall apart, and the prism has actually analysed that light. We get now a coloured band, similar to that of the rainbow, and this band is called the spectrum (see Fig. 16). If we could now run all these coloured rays together again, we should simply reproduce white light. We can do this by catching the coloured band in another prism, when the light now emerging will be found to be white. Every part of that spectrum consists of homogeneous light, _i.e._ light that cannot be further split up. The way in which the white light is so unravelled by the prism is this: As the light passes through the prism its different component coloured rays are variously deflected from their normal course, so that on emerging we have each of these coloured rays travelling in its own direction, vibrating in its own plane. It is well to remember that the bending off, or deflection, or refraction, is towards the thick end of the prism always, and that those of the coloured rays in that analysed band, the spectrum, most bent away from the original line of
PREV.   NEXT  
|<   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104  
105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   >>  



Top keywords:
coloured
 

colour

 

spectrum

 
emerging
 

variously

 

rainbow

 

analysed

 

vibrating

 

number

 

remember


called

 
bending
 

similar

 
original
 
unravelling
 

simple

 

instrument

 

letting

 

refraction

 

illumine


deflection

 

consists

 

homogeneous

 

passes

 

deflected

 
unravelled
 

simply

 

direction

 

component

 

reproduce


normal

 

travelling

 
catching
 

effect

 

physical

 

structure

 

bodies

 

emanates

 

apparently

 

objects


Originally
 
proceeds
 

source

 

peculiar

 

heated

 
chocolate
 

repeated

 
cooling
 
chemical
 

substance