FREE BOOKS

Author's List




PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  
ces_ current; the carbon transmitter _controls_ current. The former is an alternating-current generator; the latter is a rheostat. The magneto transmitter produces alternating current without input of any electricity at all; the carbon transmitter merely controls a direct current, supplied by an external source, and varies its amount without changing its direction. The carbon transmitter, however, may be associated with other devices in a circuit in such a way as to _transform_ direct currents into alternating ones, or it may be used merely to change constant direct currents into _undulating_ ones, which _never_ reverse direction, as alternating currents _always_ do. These distinctions are important. [Illustration: Fig. 10. Battery in Line Circuit] _Limitations._ A carbon transmitter being merely a resistance-varying device, its usefulness depends on how much its resistance can vary in response to motions of air molecules. A granular-carbon transmitter may vary between resistances of 5 to 50 ohms while transmitting a particular tone, having the lower resistance when its diaphragm is driven inward. Conceive this transmitter to be in a line as shown in Fig. 10, the line, distant receiver, and battery together having a resistance of 1,000 ohms. The minimum resistance then is 1,005 ohms and the maximum 1,050 ohms. The variation is limited to about 4.5 per cent. The greater the resistance of the line and other elements than the transmitter, the less relative change the transmitter can produce, and the less loudly the distant receiver can speak. [Illustration: Fig 11. Battery in Local Circuit] Induction Coil. Mr. Edison realized this limitation to the use of the carbon transmitter direct in the line, and contributed the means of removing it. His method is to introduce an induction coil between the line and the transmitter, its function being to translate the variation of the direct current controlled by the transmitter into true alternating currents. An induction coil is merely a transformer, and for the use under discussion consists of two insulated wires wound around an iron core. Change in the current carried by one of the windings _produces_ a current in the other. If direct current be flowing in one of the windings, and remains constant, no current whatever is produced in the other. It is important to note that it is change, and change only, which produces that alternating current. Fig. 11 shows an inducti
PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  



Top keywords:

transmitter

 

current

 

resistance

 

alternating

 
direct
 

carbon

 

change

 

currents

 

produces

 

important


distant

 

receiver

 

Illustration

 
variation
 
induction
 
Battery
 

Circuit

 

constant

 

windings

 

controls


direction

 

produced

 

produce

 
loudly
 

relative

 

Induction

 
remains
 
elements
 

limited

 
inducti

maximum
 

greater

 
function
 

translate

 
insulated
 

controlled

 

discussion

 
transformer
 

consists

 

contributed


limitation

 
realized
 

flowing

 

removing

 
introduce
 

method

 

Change

 

carried

 
Edison
 

granular