FREE BOOKS

Author's List




PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  
he range of chemical affinity unite with more or less violence; the motion of transition of the particles is transformed, wholly or in part, into a vibratory or rotary motion, either of the particles themselves or the interatomic ether; and according to the quality of the motions we are as a rule, besides other effects, made conscious of heat or light, or of both. When these emanations come to be examined they are found to be complex in the extreme, intimately bound up together, and yet capable of being separated and analyzed. As soon as the law of definite chemical combination was firmly established, the circumstance that changes of temperature accompanied most chemical combinations was noticed, and chemists were not long in suspecting that the amount of heat developed or absorbed by chemical reaction should be as much a property of the substances entering into combination as their atomic weights. Solid ground for this expectation lies in the dynamic theory of heat. A body of water at a given height is competent by its fall to produce a definite and invariable quantity of heat or work, and in the same way two substances falling together in chemical union acquire a definite amount of kinetic energy, which, if not expended in the work of molecular changes, may also by suitable arrangements be made to manifest a definite and invariable quantity of heat. At the end of last century Lavoisier and Laplace, and after them, down to our own time, Dulong, Desprez, Favre and Silbermann, Andrews, Berthelot, Thomson, and others, devoted much time and labor to the experimental determination of the heat of combustion and the laws which governed its development. Messrs. Favre and Silbermann, in particular, between the years 1845 and 1852, carried out a splendid series of experiments by means of the apparatus partly represented in Fig. 1 (opposite), which is a drawing one-third the natural size of the calorimeter employed. It consisted essentially of a combustion chamber formed of thin copper, gilt internally. The upper part of the chamber was fitted with a cover through which the combustible could be introduced, with a pipe for a gas jet, with a peep hole closed by adiathermanous but transparent substances, alum and glass, and with a branch leading to a thin copper coil surrounding the lower part of the chamber and descending below it. The whole of this portion of the apparatus was plunged into a thin copper vessel, silvered interna
PREV.   NEXT  
|<   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31  
32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   >>   >|  



Top keywords:

chemical

 
definite
 

chamber

 
copper
 

substances

 

Silbermann

 
combustion
 

motion

 

particles

 

combination


amount

 
apparatus
 

invariable

 

quantity

 

series

 

splendid

 

carried

 
Messrs
 

development

 

Berthelot


Laplace

 

Lavoisier

 

century

 

manifest

 

Dulong

 
experimental
 
determination
 

devoted

 
Desprez
 

Andrews


experiments
 

Thomson

 

governed

 

natural

 
transparent
 

branch

 

adiathermanous

 

closed

 
leading
 

plunged


portion

 
vessel
 

silvered

 

interna

 

surrounding

 
descending
 

introduced

 
arrangements
 

calorimeter

 

drawing