FREE BOOKS

Author's List




PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   >>   >|  
e insulated nickel wire is wound in a flattened spiral and then passed through a thin lead tube flattened somewhat. This lead tube is then wound around a central core and the flattened portions attached at such an angle that the water passing through the tubes has a tendency to be directed away from the center and against the outer wall, thus insuring a mixing of the water. Space is left for the insertion of the mercurial thermometer. With the thermometer for the ingoing water, it was found necessary to extend the bulb somewhat beyond the resistance coil, so that the water might be thoroughly mixed before reaching the bulb and thus insure a steady temperature. Thus it was found necessary to enlarge the chamber A (fig. 16) somewhat and the tube leading out of the thermometer, so that the bulb of the thermometer itself could be placed almost directly at the opening of the exit tube. Under these conditions perfect mixing of water and constancy of temperature were obtained. In the case of the thermometer which measured the outcoming water, the difficulty was not so great, as the outcoming water is somewhat nearer the temperature of the chamber, and the water as it leaves the thermometer passes first over the mercurial thermometer and then over the resistance thermometer. By means of a long series of tests it was found possible to adjust these resistance thermometers so that the variations in resistance were in direct proportion to the temperature changes noted on the mercurial thermometers. Obviously, these differences in resistance of the two thermometers can be measured directly with the Wheatstone bridge, but, what is more satisfactory, they are measured and recorded directly on a special type of automatic recorder described beyond. OBSERVER'S TABLE. The measurements of the temperature of the respiration chamber, of the water-current, and of the body temperature of the man, as well as the heating and cooling of the air-spaces about the calorimeter, are all under the control of the physical assistant. The apparatus for these temperature controls and measurements is all collected compactly on a table, the so-called "observer's table." At this, the physical assistant sits throughout the experiments. For convenience in observing the mercurial thermometers in the water-current and general inspection of the whole apparatus, this table is placed on an elevated platform, shown in fig. 3. Directly in front of the table the
PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   >>   >|  



Top keywords:
thermometer
 
temperature
 

resistance

 

thermometers

 

mercurial

 

measured

 

chamber

 

directly

 

flattened

 
current

mixing
 

physical

 

outcoming

 

assistant

 

measurements

 
apparatus
 

direct

 

recorder

 
automatic
 

recorded


variations

 

special

 

differences

 

Directly

 
Obviously
 

proportion

 

bridge

 

Wheatstone

 

satisfactory

 

heating


called
 
observer
 
compactly
 

collected

 

controls

 
inspection
 

observing

 

experiments

 

general

 
control

convenience

 
respiration
 

cooling

 

calorimeter

 

elevated

 
adjust
 
platform
 
spaces
 

OBSERVER

 
constancy