FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
is zero, the sliding contact _q_ stands at 0 on the slide-wire and thus the resistance of the system from 0 through _fl_, _r_, and T_{1} back to the point C is exactly the same as the resistance of the slide-wire J plus the coil _fr_ plus T_{2} back to the point C. A rise in temperature of T_{2} gives an increase of resistance in the circuit and the sliding contact _q_ moves along the slide-wire toward J maximum until a balance is obtained. [Illustration: FIG. 19.--Diagram of wiring of differential circuit with its various shunts, used in connection with resistance thermometers on water-circuit of bed calorimeter.] Provision is made for automatically moving the contact _q_ by electrical means and thus the complete balance of the two differential circuits is maintained constant from second to second. As the contact _q_ is moved, it carries with it a stylographic pen which travels in a straight line over a regularly moving roll of coordinate paper, thus producing a permanently recorded curve indicating the temperature differences. The slide-wire J is calibrated so that any inequalities in the temperature coefficient of the thermometer wires are equalized and also so that any unit-length on the slide-wire taken at any point along the temperature scale represents a resistance equal to the resistance change in the thermometer for that particular change in temperature. With the varying conditions to be met with in this apparatus, it is necessary that varying values should be assigned at times to J and to _r_. This necessitates the use of shunts, and the recording range of the instrument can be easily varied by simple shunting, _i. e._, by changing the resistance value of J and _r_, providing these resistances unshunted have a value which takes care of the highest obtained temperature variations. Fig. 19 shows the differential circuit complete with all its shunts. S is a fixed shunt to obtain a range on J; S' is a variable shunt to permit very slight variations of J within the range to correct errors due to changing of the initial temperatures of the thermometers; _y_ is a permanent shunt across the galvanometer coil _fl_, to make the temperature coefficients of _fl_ and _fr_ absolutely equal; Z is the variable resistance in the battery-circuit to keep the current constant; _r_ is a permanent resistance to fix the zero on varying ranges; S'' plus S_{1} constitutes a variable shunt to permit slight variations of _r_ to f
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:
resistance
 
temperature
 

circuit

 

contact

 

differential

 

variations

 

variable

 

shunts

 

varying

 
permit

obtained
 

balance

 

constant

 

slight

 

thermometers

 
change
 

sliding

 

thermometer

 
complete
 

moving


changing

 

permanent

 

shunting

 

simple

 
varied
 

easily

 

values

 

apparatus

 

conditions

 

assigned


recording
 
necessitates
 
providing
 

instrument

 

correct

 
coefficients
 

absolutely

 

galvanometer

 

temperatures

 
battery

constitutes

 
ranges
 

current

 

initial

 

highest

 
resistances
 
unshunted
 
errors
 

obtain

 
connection