FREE BOOKS

Author's List




PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  
ature conditions may easily be such that the air entering is warmer than the outcoming air, in which case heat will be imparted to the calorimeter, or the reverse conditions may obtain and then heat will be brought away. To avoid this difficulty, arrangements are made for arbitrarily controlling the temperature of the air as it enters the calorimeter. This temperature control is based upon the fact that the air leaving the chamber is caused to pass over the ends of a series of thermal junctions shown as O in fig. 25. These thermal junctions have one terminal in the outgoing air and the other in the ingoing air, and consequently any difference in the temperature of the two air-currents is instantly detected by connecting the circuit with the galvanometer. Formerly the temperature control was made a varying one, by providing for either cooling or heating the ingoing air as the situation called for. The heating was done by passing the current through an electric lamp placed in the cross immediately below the tension equalizer J. Cooling was effected by means of a current of water through the lead pipe E closely wrapped around the air-pipe, water entering at F and leaving at G. This lead pipe is insulated by hair-felt pipe-covering, C. More recently, we have adopted the procedure of passing a continuous current of water, usually at a very slow rate, through the lead pipe E and always heating the air somewhat by means of the lamp, the exact temperature control being obtained by varying the heating effect of the lamp itself. This has been found much more satisfactory than by alternating from the cooling system to the heating system. In the case of the air-current, however, it is unnecessary to have the drop-sight feed-valve as used for the wall control, shown in fig. 13. THE HEAT OF VAPORIZATION OF WATER. During experiments with man not all the heat leaves the body by radiation and conduction, since a part is required to vaporize the water from the skin and lungs. An accurate measurement of the heat production by man therefore required a knowledge of the amount of heat thus vaporized. One of the great difficulties in the numerous forms of calorimeters that have been used heretofore with man is that only that portion of heat measured by direct radiation or conduction has been measured and the difficulties attending the determination of water vaporized have vitiated correspondingly the estimates of the heat production. Fo
PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  



Top keywords:
temperature
 
heating
 

control

 

current

 

leaving

 

system

 

conduction

 

production

 

varying

 
passing

radiation
 

thermal

 

junctions

 

required

 

ingoing

 
difficulties
 

calorimeter

 

entering

 
measured
 

vaporized


cooling

 

conditions

 

continuous

 

satisfactory

 
alternating
 

effect

 

obtained

 

unnecessary

 

numerous

 

calorimeters


knowledge
 
amount
 
heretofore
 

correspondingly

 

estimates

 
vitiated
 

determination

 

portion

 

direct

 
attending

measurement

 
During
 

experiments

 

VAPORIZATION

 

leaves

 
accurate
 
vaporize
 
procedure
 

immediately

 
caused