FREE BOOKS

Author's List




PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  
ressed air and water is shown in fig. 13, in which it is seen that a small drop-sight feed-water valve is attached to the pipe C leading into the dead air-space surrounding the calorimeter chamber. Compressed air enters at B and the amount entering can be regulated by the pet-cock. The amount of water admitted is readily observed by the sight feed-valve. When once adjusted this form of apparatus produces a relatively constant cooling effect and facilitates greatly the manipulation of the calorimetric apparatus as a whole. THE THERMO-ELECTRIC ELEMENTS. In order to detect differences in temperature between the copper and zinc walls, some system for measuring temperature differences between these walls is essential. For this purpose we have found nothing that is as practical as the system of iron-German-silver thermo-electric elements originally introduced in this type of calorimeter by E. B. Rosa, of the National Bureau of Standards, formerly professor of physics at Wesleyan University. In these calorimeters the same principle, therefore, has been applied, and it is necessary here only to give the details of such changes in the construction of the elements, their mounting, and their insulation as have been made as a result of experience in constructing these calorimeters. An element consisting of four pairs of junctions is shown in place as T-J in fig. 25. One ever-present difficulty with the older form of element was the tendency for the German-silver wires to slip out of the slots in which they had been vigorously crowded in the hard maple spool. In thus slipping out of the slots they came in contact with the metal thimble in the zinc wall and thus produced a ground. In constructing the new elements four pairs of iron-German-silver thermal junctions were made on essentially the same plan as that previously described,[6] the only modification being made in the spool. While the ends of the junctions nearest the copper are exposed to the air so as to take up most rapidly the temperature of the copper, it is somewhat difficult to expose the ends of the junctions nearest the zinc and at the same time avoid short-circuiting. The best procedure is to extend the rock maple spool which passes clear through the ferule in the zinc wall and cut a wide slot in the spool so as to expose the junctions to the air nearest the ferule. By so doing the danger to the unprotected ends of the junctions is much less. The two lead-wires
PREV.   NEXT  
|<   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46  
47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   >>   >|  



Top keywords:
junctions
 
elements
 

silver

 

German

 

copper

 

temperature

 

nearest

 

ferule

 

apparatus

 
element

differences
 

amount

 

constructing

 

calorimeter

 

calorimeters

 
expose
 

system

 

contact

 
consisting
 

difficulty


present

 

vigorously

 

crowded

 

tendency

 
thimble
 

slipping

 

modification

 

passes

 

extend

 

procedure


circuiting
 
unprotected
 
danger
 

essentially

 

previously

 
ground
 

thermal

 

rapidly

 

difficult

 
exposed

produced

 
physics
 

adjusted

 

produces

 

observed

 
admitted
 
readily
 
constant
 

cooling

 
THERMO