FREE BOOKS

Author's List




PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   >>   >|  
nate and oxides of iron, argillaceous material, and chert or chalcedony. Dolomites when very pure and well crystallized may be snowy white (e.g. some examples from the eastern Alps), but are commonly yellow, creamy, brownish or grey from the presence of impurities. They tend to be crystalline, though on a fine scale, and appear under the microscope composed of small sharply angular rhombohedra, with a perfect cleavage and very strong double refraction. They can be often recognized by this, but are most certainly distinguished from similar limestones or marbles by tests with weak acid. Dolomite dissolves only very slowly in dilute hydrochloric acid in the cold, but readily when the acid is warmed; limestones are freely attacked by the acid in either state. Magnesian limestones, which contain both dolomite and calcite, may be etched by exposing polished surfaces for a brief time to cold weak acid; the calcite is removed, leaving small pits or depressions. The distribution of the calcite may be rendered more clear by using ferric chloride solution. This is decomposed, leaving a yellow stain of ferric hydrate where the calcite occurred. Alternatively, a solution of aluminium chloride will serve; this precipitates gelantinous alumina on contact with calcite and the film can be stained with aniline dyes (Lemberg's solution). The dolomite is not affected by these processes. Dolomites of compact structure have a higher specific gravity than limestones, but they very often have a cavernous or drusy character, the walls of the hollows being lined with small crystals of dolomite with a pearly lustre and rounded faces. They are also slightly harder, and for these and other reasons they last better as building stones and wear better when used for paving or road-mending. Dolomites are rarely fossiliferous, as the process of dolomitization tends to destroy any organic remains originally present. As compared with limestones they are less frequently well bedded, but there are exceptions to this rule. Many dolomites, particularly those of the north of England, show a very remarkable concretionary structure. The beds look as if made up of rounded balls of all sizes from a foot or two in diameter downwards. Often they are stuck together like piles of shot or bunches of grapes. They are composed of fibrous radiate calcite crystals, which by some kind of concretionary action have segregated from the dolomitic material and grouped themselves
PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   >>   >|  



Top keywords:
calcite
 

limestones

 
dolomite
 

solution

 
Dolomites
 

leaving

 

crystals

 
rounded
 

concretionary

 

structure


composed
 

ferric

 

chloride

 

yellow

 

material

 
paving
 

mending

 
stones
 
oxides
 

building


rarely

 

fossiliferous

 

organic

 

remains

 

originally

 

present

 

destroy

 

process

 

dolomitization

 

reasons


cavernous
 

character

 

chalcedony

 
higher
 

specific

 

gravity

 

hollows

 

slightly

 
harder
 
argillaceous

lustre

 

pearly

 
compared
 

diameter

 

bunches

 

segregated

 

dolomitic

 

grouped

 

action

 

grapes