FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
viation." In order to make possible the comparison of the variabilities of characteristics measured in unlike units, such as weight and stature, this index must be converted into an equivalent abstract quantity. This is done by reducing the index of variability to per cents of the group average, giving what is called the _coefficient_ of variability. Thus, for example, in stature the index of variability (standard deviation) of certain classes of men is approximately 2.7 inches; that is, in a large group of men the amount of individual variation from the average height of 69 inches amounts to 2.7 inches. This gives an abstract _coefficient_ of about 4.0 per cent, for 2.7 equals 3.9 per cent of 69. Similarly the index of variability of the weight of a group of university students has been found to be about 16.5 pounds; the average weight is about 153 pounds, and the coefficient of variability is therefore about 10.8 per cent (16.5 equals 10.78 per cent of 153). Although pounds and inches may not be compared, these two abstract coefficients may be, and we may say that men are more than twice as variable in weight as in stature. Turning now to variation of the second type we find what are ordinarily called _mutations_, or differences quite properly termed _variations_, in a strict sense, as distinguished from the preceding fluctuations or variability phenomena. Mutations or variations are abrupt changes of the average or type condition to a new condition or value which then becomes a new center of fluctuating variability. The difference between variability and variation may be illustrated through an analogy suggested by Galton (Fig. 5). A polygonal plinth, or better a polyhedron, resting upon one face is easily tipped slightly back and forth, but after slight disturbance it always returns to its first position of stable equilibrium. Each face of the plinth or polyhedron represents an organismal characteristic; these slight backward and forward movements represent fluctuations, always centering about the average condition. An unusually hard push sends the plinth over upon another face in which it has a new position of stability; this represents true variation or mutation. In this new position it is again stable, may again be rocked back and forth showing fluctuations about its new average position. [Illustration: FIG. 5.--Plinth to illustrate the difference between variability (fluctuation) and variation (mutati
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:

variability

 

average

 
variation
 

position

 

inches

 

weight

 

fluctuations

 
coefficient
 

plinth

 

condition


pounds

 

abstract

 

stature

 
stable
 
slight
 

equals

 

polyhedron

 
called
 

represents

 

difference


variations
 

center

 
fluctuating
 

polygonal

 

Galton

 

easily

 

resting

 

analogy

 

suggested

 
illustrated

equilibrium

 

stability

 

mutation

 
rocked
 

illustrate

 
fluctuation
 
mutati
 

Plinth

 

showing

 
Illustration

unusually

 
returns
 
disturbance
 

slightly

 

organismal

 

represent

 

centering

 
movements
 
forward
 

characteristic