FREE BOOKS

Author's List




PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  
arent, some white like the other grandparent. Not only this but we get certain definite proportions among these three classes of descendants. Of the total number of the immediate offspring of the hybrid blues, approximately one half will be blue like the parents, approximately one fourth black, and one fourth white like each of the grandparents. Now comes the most important fact of all. These blacks, bred together produce only blacks, the whites similarly produce only whites; the blues, on the other hand, when bred together produce progeny sorting into the same original classes and in the same proportions as were produced by the blues of the original hybrid generation. Their blacks and whites each breed true, their blues repeat the history of the preceding blues. No race of the hybrid character can be established: blues always produce blacks and whites, as well as blues. A summary of this history in graphic and diagrammatic form is given in Fig. 7. [Illustration: FIG. 7.--Diagram showing the course of color heredity in the Andalusian fowl, in which one color does not completely dominate another. _P_, parental generation. The offspring of this cross constitute _F1_, the first filial or hybrid generation. _F2_, the second filial generation. Bottom row, third filial generation.] This law of heredity was first discovered about forty-five years ago by Gregor Mendel, working with peas in the garden of the Augustinian monastery in Bruenn, Austria. His work curiously failed to arouse the interest of contemporary scientists and his results were soon completely lost sight of. The independent rediscovery of Mendel's formulas of heredity, about ten years ago, was probably the most important event in the history of biology and evolution since the publication of "The Origin of Species." In most cases of Mendelian heredity the progeny are less easily classified than in the case above, because the hybrid individuals resemble one or the other of the parents, quite or very closely. For instance the crossing of the black and white varieties of guinea pigs gives hybrids that are all black like one parent. That is, when the black and white characters are brought together these do not appear to blend into a gray or "blue," as in the case of the Andalusian fowl, but one character alone appears; the black seems to cover up or wipe out the white. This illustrates the frequent phenomenon of _dominance_; one of the
PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  



Top keywords:
generation
 

hybrid

 

blacks

 

heredity

 
whites
 

produce

 
filial
 

history

 

original

 

progeny


Mendel

 

completely

 
Andalusian
 
character
 

fourth

 
offspring
 

approximately

 
proportions
 

parents

 

important


classes

 
independent
 

appears

 

formulas

 
rediscovery
 

contemporary

 

curiously

 

phenomenon

 

frequent

 

dominance


Bruenn

 

Austria

 
failed
 

illustrates

 
scientists
 

results

 

arouse

 

interest

 

publication

 
instance

monastery

 
closely
 

resemble

 

brought

 

crossing

 

characters

 

guinea

 

parent

 

varieties

 

individuals