FREE BOOKS

Author's List




PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  
n a given direction in the first group is accompanied in the second group by a deviation in the opposite direction. If we imagine that as one measurement increased above its average a second related measurement decreased below its average the correlation in such a case would be negative. For instance, if we measured the relation between the number of berry pickers employed and the quantity of berries remaining unpicked, in a number of different fields we would get a negative correlation coefficient. Some organisms are formed in such a way that increase in one dimension, such as length, is associated with decrease in another, such as breadth; measurement of the relatedness of these dimensions would give a coefficient of correlation that might be very high, indicating a considerable relation in the deviations, but it would be negative. In an instance of negative correlation the relation is that of "the more the fewer." As we shall see presently, a negative correlation may be just as important and significant as a positive correlation. The application of the principles of heredity to our subject of Eugenics is of such great importance that it is reserved for separate consideration in the next chapter. We may, therefore, devote the remainder of this chapter to the consideration of data of another kind, which are commonly treated by this same method of determining correlation coefficients between two sets of varying phenomena in order to determine whether there is any actual relation between them or not. This will serve to illustrate the use of this method. We shall turn then to the subject of differential or selective fertility in human beings and consider its relation to Eugenics. As a starting point we may take the self-evident statement that a group of organisms will tend to maintain constant characteristics through successive generations only when all parts of the group are equally fertile. If exceptional fertility is associated with the presence or absence of any characteristic the number of individuals with or without that trait will either increase or diminish in successive generations, and the character of the distribution of the group as a whole will gradually become altered, the average moving in the direction of the more fertile group. Or if infertility is so associated, then the average of the whole group moves away from that condition. Eugenically, then, we should ask whether in human society there is at p
PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  



Top keywords:

correlation

 

negative

 
relation
 

average

 

number

 

direction

 

measurement

 
successive
 

generations

 

organisms


consideration

 

increase

 

method

 
chapter
 
coefficient
 

fertility

 

Eugenics

 
subject
 

fertile

 

instance


illustrate
 

condition

 
selective
 

beings

 

differential

 

determine

 

phenomena

 

varying

 

society

 
starting

actual

 

Eugenically

 

distribution

 
exceptional
 

gradually

 
equally
 
presence
 

character

 

individuals

 
diminish

absence

 
characteristic
 
evident
 

statement

 

moving

 

altered

 

characteristics

 
maintain
 
constant
 

infertility