FREE BOOKS

Author's List




PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   >>   >|  
ses the black color observed may result either from a single (_BW_) or from a double (_BB_) black determiner in the germ which forms the organism. Only when the black determiner is entirely absent (_WW_) does the white color appear in the developed organism and the individual is then said to exhibit the recessive characteristic. [Illustration: FIG. 9.--Diagram illustrating the relation of the germ cells in a simple case of Mendelian heredity, such as that of color as shown in Figs. 7 and 8. The spaces between the large circles represent the bodies of the individuals while the small circles within each represent the germ cells formed by those individuals. _P_, parental generation; each individual forms a single kind of germ cells. _G. F1_, germs of the first filial or hybrid generation, each composed of two different kinds of germ cells, one from each parent. _F1_, individuals of the first filial or hybrid generation, developed from _G. F1_. Each member of this generation forms two kinds of germ cells in approximately equal numbers. _G. C. F1_, germ cells of _F1_, showing possible combinations resulting from the mating of two members of _F1_. Each of these combinations occurs with equal probability. _G. F2_, germs of second filial generation resulting from the above random combinations. _F2_, individuals of second filial generation. Each now forms germ cells like those which constituted its own germ.] Another possible type of mating is that between a member of a pure race, either dominant or recessive, and a hybrid individual. This form of mating is very common in some of the pedigrees that we shall examine later. The results of such a mating, first between a hybrid and a recessive individual can be most easily described by considering a cross between black and white forms and expressing the result algebraically. Germ cells of first parent (white or recessive) _W_ + _W_ Germ cells of second parent (hybrid) _B_ + _W_ ------------- _BW_ + _BW_ _WW_ + _WW_ --------------------- _2BW_ + _2WW_ That is, returning to the example of the Andalusian fowls, the progeny will be
PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   >>   >|  



Top keywords:

generation

 

hybrid

 
recessive
 

filial

 

individual

 

mating

 

individuals

 
parent
 

combinations

 

represent


circles

 

determiner

 

single

 
resulting
 
result
 

organism

 

member

 
developed
 

Another

 

constituted


probability
 

random

 
examine
 

algebraically

 

expressing

 

progeny

 

Andalusian

 

returning

 

easily

 
common

dominant

 

pedigrees

 

results

 
occurs
 

parental

 
Illustration
 
characteristic
 

exhibit

 

Diagram

 
simple

relation

 
illustrating
 
double
 

observed

 

absent

 

Mendelian

 

heredity

 
composed
 
approximately
 

members