FREE BOOKS

Author's List




PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  
al only one color appears, the second becomes recessive, that is, it remains present as we know from the later history of such hybrids, but it is not visibly indicated. Besides the Andalusian fowls there are known several other instances of the absence of dominance and there are many cases where dominance is incomplete, i. e., where one character merely tends to dominate the other. And in a few instances dominance is irregular, i. e., sometimes one character dominates, at other times or under other circumstances it does not, as with certain forms of the comb or the feathering of the legs in the common fowl, or with the presence of an extra toe in the domestic cat, the rabbit, and guinea pig. And even in those cases where dominance is said to be complete the trained eye of the breeder can frequently distinguish between the hybrid and the pure bred dominant individuals. The phenomenon of dominance, therefore, is not an essential of the Mendelian theory although it is a frequent, we may say usual, relation. It does not come within our province to attempt an explanation of this formula of heredity by describing some of the more fundamental conditions upon which it depends. In fact, no complete explanation is yet possible, although several explanatory hypotheses have been suggested. We may outline briefly that which seems the most satisfactory in that it serves to account for most of the facts in Mendelian heredity in a comparatively simple manner. The germ of an organism, we have seen, somehow contains dispositions of materials which primarily determine the characteristics of the organism developed from that germ. To these dispositions or configurations the term of "determiners" has been applied. In a pure variety like the black Andalusians, all the germ cells of each fowl are alike in having this determiner for black color. When two such fowls are mated together their descendants will result from the fusion of two germ cells, _each_ containing the determiner for black color; that is, the germ of the new individual comes to have a double determiner, one from each parent, for this trait. In the white variety all the germ cells are alike in _lacking_ this determiner; blackness is entirely absent and all their descendants are formed from germ cells entirely without black determiners. When the single germ cell of a black fowl with its single black determiner is fertilized by a germ cell from a white fowl without any determine
PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  



Top keywords:
dominance
 

determiner

 

variety

 

determiners

 
dispositions
 

organism

 
single
 

complete

 

Mendelian

 

determine


heredity

 

character

 
descendants
 
instances
 

explanation

 
fertilized
 

depends

 
comparatively
 

hypotheses

 

satisfactory


explanatory

 
briefly
 

outline

 

suggested

 
serves
 

simple

 

account

 

lacking

 

blackness

 

result


parent

 

individual

 
fusion
 

double

 
Andalusians
 

primarily

 

characteristics

 

developed

 

materials

 
configurations

absent

 
formed
 

applied

 

manner

 

theory

 

irregular

 

dominates

 

dominate

 

incomplete

 

common