FREE BOOKS

Author's List




PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  
r for black the resulting hybrid has a color produced by only a single determiner, that from the black parent, and in this case the blackness is not as fully expressed because produced by only this single determiner and the fowl appears gray or "blue"; that is, the black produced by a single determiner is in this case not as black as that produced by the double determiner. Now of course this hybrid fowl forms germ cells containing determiners for color, but these cells, instead of being all alike and with semi-black determiners corresponding with the semi-black characteristics of the individual, are of two different kinds--some are like those of each of the grandparents which fused to give origin to the parent forms, and these are formed in approximately equal numbers--one half with the black determiner, one half without it. When two such fowls are bred together the chances are equal for certain combinations of germ cells; the chances are equal that the "black" or "white" germ cell of the one individual shall meet and conjugate with the "black" or "white" germ cell of the other individual. The result may be expressed algebraically as follows, using the letters _B_ and _W_ to indicate respectively germ cells with and without the black color determiner. Germ cells of first parent _B_ + _W_ Germ cells of second parent _B_ + _W_ ------------- _BB_ + _BW_ _BW_ + _WW_ ----------------- Combinations in the germ of the offspring _1BB_ + _2BW_ + _1WW_ That is, one fourth are pure black (_BB_), one fourth pure white (_WW_), and the remaining half are hybrids, black and white (_BW_). The pure blacks again form germ cells, all possessing the determiner for blackness; the pure whites form germ cells all lacking the determiner for blackness; the hybrid blues produce again equal numbers of germ cells possessing and lacking the determiner for blackness. The relation of the germ cells and the organisms forming them and developing from them is shown in the diagram in Fig. 9. In the more common cases where the phenomenon of dominance appears, as in the guinea pig, this is explained by saying that here a single determiner for blackness is somehow sufficient to produce the color. In such ca
PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  



Top keywords:
determiner
 

blackness

 

produced

 

parent

 
single
 

hybrid

 
individual
 

numbers

 

lacking


produce

 

possessing

 

chances

 
fourth
 
appears
 

expressed

 
determiners
 

blacks

 
hybrids

remaining

 

explained

 

whites

 
Combinations
 

offspring

 

sufficient

 
common
 

phenomenon

 

guinea


diagram

 

organisms

 

relation

 

forming

 

developing

 
resulting
 

dominance

 
approximately
 

formed


origin

 

grandparents

 

algebraically

 
letters
 

double

 
characteristics
 

result

 

combinations

 

conjugate