FREE BOOKS

Author's List




PREV.   NEXT  
|<   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417  
418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   >>   >|  
volume T, we may write TZ y d / e^-ikr \ [=omega]1 = -------- . - . -- ( ------ ) (13). 4[pi]b^2 r dr \ r / In like manner we find TZ x d / e^-ikr \ [=omega]2 = -------- . - . -- ( ------- ) (14). 4[pi]b^2 r dr \ r / From (10), (13), (14) we see that, as might have been expected, the rotation at any point is about an axis perpendicular both to the direction of the force and to the line joining the point to the source of disturbance. If the resultant rotation be [omega], we have TZ [sqrt](x^2 + y^2) d /e^-ikr\ [=omega] = ------- . ----------------- . -- ( ------ ) = 4[pi]b^2 r dr \ r / TZ sin[phi] d /e^-ikr\ = ----------- -- ( ------ ), 4[pi]b^2 dr \ r / [phi] denoting the angle between r and z. In differentiating e^(-ikr)/r with respect to r, we may neglect the term divided by r^2 as altogether insensible, kr being an exceedingly great quantity at any moderate distance from the origin of disturbance. Thus -ik.TZ sin[phi] /e^-ikr\ [=omega] = --------------- . ( ------ ) (15), 4[pi]b^2 \ r / which completely determines the rotation at any point. For a disturbing force of given integral magnitude it is seen to be everywhere about an axis perpendicular to r and the direction of the force, and in magnitude dependent only upon the angle ([phi]) between these two directions and upon the distance (r). The intensity of light is, however, more usually expressed in terms of the actual displacement in the plane of the wave. This displacement, which we may denote by [zeta]', is in the plane containing z and r, and perpendicular to the latter. Its connexion with [=omega]is expressed by [=omega] = d[zeta]'/dr; so that TZ sin [phi] /e^-ikr\ [zeta]' = ----------- . ( ------ ) (16), 4[pi]b^2 \ r / where the factor e^int is restored. Retaining only the real part of (16), we find, as the result of a local application of force equal to DTZ cos nt (17), the disturbance expressed by TZ sin [phi] /cos(nt - kr)\ [zeta]' = --------
PREV.   NEXT  
|<   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417  
418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   >>   >|  



Top keywords:

rotation

 

perpendicular

 

disturbance

 

expressed

 
displacement
 
magnitude
 

distance

 

direction


directions

 

intensity

 

dependent

 

factor

 

result

 

restored

 

denote

 

application


actual

 
connexion
 

Retaining

 

joining

 
expected
 
source
 

differentiating

 

denoting


resultant

 

volume

 

manner

 
respect
 

neglect

 

completely

 

determines

 
integral

disturbing

 
origin
 

insensible

 

altogether

 
divided
 
exceedingly
 

moderate

 

quantity