FREE BOOKS

Author's List




PREV.   NEXT  
|<   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412  
413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   >>   >|  
isplacements of the same particle at the end of time t, measured in the directions of the three axes respectively. Then the first of the equations of motion may be put under the form d^2[xi] /d^2[xi] d^2[xi] d^2[xi]\ d^2 /d^2[xi] d^2[eta] d^2[zeta]\ ------ = b^2( ------ + -------- + ------- ) + (a^2 - b^2)---( ------- + -------- + --------- ), dt^2 \ dx^2 dy^2 dz^2 / dx \ dx^2 dy^2 dz^2 / where a2 and b2 denote the two arbitrary constants. Put for shortness d^2[xi] d^2[eta] d^2[zeta] ------- + -------- + --------- = [delta] (1), dx^2 dy^2 dz^2 and represent by [Delta]^2[chi] the quantity multiplied by b^2. According to this notation, the three equations of motion are d^2[xi] d[delta] \ ------- = b^2[Delta]^2[xi] + (a^2 - b^2) -------- | dt^2 dx | | d^2[eta] d[delta] | -------- = b^2[Delta]^2[eta] + (a^2 - b^2) -------- > (2). dt^2 dy | | d^2[zeta] d[delta] | --------- = b^2[Delta]^2[zeta] + (a^2 - b^2) -------- | dt^2 dz / It is to be observed that S denotes the dilatation of volume of the element situated at (x, y, z). In the limiting case in which the medium is regarded as absolutely incompressible [delta] vanishes; but, in order that equations (2) may preserve their generality, we must suppose a at the same time to become infinite, and replace a^2[delta] by a new function of the co-ordinates. These equations simplify very much in their application to plane waves. If the ray be parallel to OX, and the direction of vibration parallel to OZ, we have [xi] = 0, [eta] = 0, while [zeta] is a function of x and t only. Equation (1) and the first pair of equations (2) are thus satisfied identically. The third equation gives d^2[zeta] d^2[zeta] --------- = --------- (3), dt^2 dx^2 of which the solution is [zeta] = f(bt - x) (4), where f is an arbitrary function. The question as t
PREV.   NEXT  
|<   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412  
413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   >>   >|  



Top keywords:

equations

 

function

 

motion

 

arbitrary

 
parallel
 
application
 

generality

 

infinite

 

suppose


replace

 

ordinates

 

simplify

 

equation

 

identically

 

solution

 

question

 

satisfied

 
vibration

direction

 

preserve

 
Equation
 
denotes
 

constants

 

denote

 

quantity

 

represent

 

shortness


measured
 

particle

 

isplacements

 

directions

 
multiplied
 

According

 
limiting
 

medium

 

regarded


vanishes
 
incompressible
 

absolutely

 

situated

 

observed

 

notation

 

element

 

volume

 

dilatation