FREE BOOKS

Author's List




PREV.   NEXT  
|<   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406  
407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   >>   >|  
1 /u e^iu du C + iS = ------------- | -------- (10). [sqrt](2[pi]) _/0 [sqrt] u Again, by a known formula, _[oo] 1 1 / e^-ux dx -------- = ---------- | -------- (11). [sqrt] u [sqrt][pi] _/0 [sqrt]x Substituting this in (10), and inverting the order of integration, we get _[oo] _u 1 / dx / e^u(i - x) C + iS = ------- | -------- | ----------- dx [sqrt]2 _/0 [sqrt] x _/0 [sqrt]x _[oo] 1 / dx e^u(i - x) - 1 = ------- | -------- -------------- dx (12). [sqrt]2 _/0 [sqrt] x i - x Thus, if we take _[oo] 1 / e^-ux [sqrt](x).dx G = ----------- | ------------------, [pi][sqrt]2 _/0 1 + x^2 _[oo] 1 / e^-ux dx H = ----------- | ------------------ (13). [pi][sqrt]2 _/ [sqrt]x . (1 + x^2) 0 C = 1/2 - G cos u + H sin u, S = 1/2 - G sin u - H cos u (14). The constant parts in (14), viz. 1/2, may be determined by direct integration of (12), or from the observation that by their constitution G and H vanish when u = [oo], coupled with the fact that C and S then assume the value 1/2. Comparing the expressions for C, S in terms of M, N, and in terms of G, H, we find that G = 1/2 (cos u + sin u) - M, H = 1/2 (cos u - sin u) + N (15), formulae which may be utilized for the calculation of G, H when u (or v) is small. For example, when u = 0, M = 0, N = 0, and consequently G = H = 1/2. Descending series of the semi-convergent class, available for numerical calculation when u is moderately large, can be obtained from (12) by writing x = uy, and expanding the denominator in powers of y. The integration of the several terms may then be effected by the formula _ [oo] / -y q-1/2 | e y dy = [Gamma](q + 1/2) = (q - 1/2)(q - 3/2) ... 1/2[sqrt][pi]; _/0 and we get in terms of v 1 1.3.5 1.3.5.9 G = --------- - ---------- + ----------- - (16), [pi]^2v^3 [pi]^4 v^7 [pi]^6 v^11 1 1.3 1.3.5.7 H = ----- - ---------- + ---------- -
PREV.   NEXT  
|<   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406  
407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   >>   >|  



Top keywords:

integration

 

formula

 

calculation

 

moderately

 
numerical

Descending
 

series

 

convergent

 

powers

 

expanding


writing

 

denominator

 

effected

 

obtained

 

determined


Substituting

 

direct

 
observation
 

constant

 

inverting


constitution
 
vanish
 

formulae

 

utilized

 

expressions


coupled

 

assume

 
Comparing