FREE BOOKS

Author's List




PREV.   NEXT  
|<   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149  
150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   >>   >|  
t to be 0.45 per cent. [Illustration: Fig. 16. Compact Throttling Calorimeter] There are many forms of throttling calorimeter, all of which work upon the same principle. The simplest one is probably that shown in Fig. 14. An extremely convenient and compact design is shown in Fig. 16. This calorimeter consists of two concentric metal cylinders screwed to a cap containing a thermometer well. The steam pressure is measured by a gauge placed in the supply pipe or other convenient location. Steam passes through the orifice A and expands to atmospheric pressure, its temperature at this pressure being measured by a thermometer placed in the cup C. To prevent as far as possible radiation losses, the annular space between the two cylinders is used as a jacket, steam being supplied to this space through the hole B. The limits of moisture within which the throttling calorimeter will work are, at sea level, from 2.88 per cent at 50 pounds gauge pressure and 7.17 per cent moisture at 250 pounds pressure. Separating Calorimeter--The separating calorimeter mechanically separates the entrained water from the steam and collects it in a reservoir, where its amount is either indicated by a gauge glass or is drained off and weighed. Fig. 17 shows a calorimeter of this type. The steam passes out of the calorimeter through an orifice of known size so that its total amount can be calculated or it can be weighed. A gauge is ordinarily provided with this type of calorimeter, which shows the pressure in its inner chamber and the flow of steam for a given period, this latter scale being graduated by trial. The instrument, like a throttling calorimeter, should be well insulated to prevent losses from radiation. While theoretically the separating calorimeter is not limited in capacity, it is well in cases where the percentage of moisture present in the steam is known to be high, to attach a throttling calorimeter to its exhaust. This, in effect, is the using of the separating calorimeter as a small separator between the sampling nozzle and the throttling instrument, and is necessary to insure the determination of the full percentage of moisture in the steam. The sum of the percentages shown by the two instruments is the moisture content of the steam. The steam passing through a separating calorimeter may be calculated by Napier's formula, the size of the orifice being known. There are objections to such a calculation, however, in tha
PREV.   NEXT  
|<   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149  
150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   >>   >|  



Top keywords:
calorimeter
 

pressure

 

moisture

 
throttling
 

separating

 

orifice

 

passes

 

measured

 

percentage

 

weighed


amount

 
radiation
 

instrument

 
losses
 
pounds
 

calculated

 

prevent

 

cylinders

 

Calorimeter

 

thermometer


convenient

 

ordinarily

 

provided

 

passing

 

chamber

 
period
 

content

 

objections

 

calculation

 

Napier


formula

 

instruments

 
capacity
 

separator

 

limited

 

effect

 

exhaust

 

attach

 

drained

 

present


sampling
 
theoretically
 

graduated

 

percentages

 

determination

 
insure
 

nozzle

 
insulated
 
consists
 

concentric