FREE BOOKS

Author's List




PREV.   NEXT  
|<   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183  
184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   >>   >|  
e gas driven over into B by raising the bottle F. The gas is drawn back into A by lowering F and when the solution in B has reached the mark in the capillary tube, the cock I is closed and a reading is taken on the burette, the level of the water in the bottle F being brought to the same level as the water in A. The operation is repeated until a constant reading is obtained, the number of cubic centimeters being the percentage of CO_{2} in the flue gases. The gas is then driven over into the pipette C and a similar operation is carried out. The difference between the resulting reading and the first reading gives the percentage of oxygen in the flue gases. The next operation is to drive the gas into the pipette D, the gas being given a final wash in E, and then passed into the pipette C to neutralize any hydrochloric acid fumes which may have been given off by the cuprous chloride solution, which, especially if it be old, may give off such fumes, thus increasing the volume of the gases and making the reading on the burette less than the true amount. The process must be carried out in the order named, as the pyrogallol solution will also absorb carbon dioxide, while the cuprous chloride solution will also absorb oxygen. As the pressure of the gases in the flue is less than the atmospheric pressure, they will not of themselves flow through the pipe connecting the flue to the apparatus. The gas may be drawn into the pipe in the way already described for filling the apparatus, but this is a tedious method. For rapid work a rubber bulb aspirator connected to the air outlet of the cock G will enable a new supply of gas to be drawn into the pipe, the apparatus then being filled as already described. Another form of aspirator draws the gas from the flue in a constant stream, thus insuring a fresh supply for each sample. The analysis made by the Orsat apparatus is volumetric; if the analysis by weight is required, it can be found from the volumetric analysis as follows: Multiply the percentages by volume by either the densities or the molecular weight of each gas, and divide the products by the sum of all the products; the quotients will be the percentages by weight. For most work sufficient accuracy is secured by using the even values of the molecular weights. The even values of the molecular weights of the gases appearing in an analysis by an Orsat are: Carbon Dioxide 44 Carbon Monoxide 28 Oxygen
PREV.   NEXT  
|<   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183  
184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   >>   >|  



Top keywords:

reading

 

solution

 
analysis
 

apparatus

 
weight
 

operation

 

pipette

 

molecular

 

aspirator

 

carried


percentages

 
chloride
 

cuprous

 

volume

 
supply
 
volumetric
 
oxygen
 

constant

 

burette

 
absorb

weights
 

values

 

Carbon

 

bottle

 
products
 
percentage
 

driven

 

pressure

 

filling

 

filled


tedious
 

method

 

rubber

 

connected

 

enable

 

outlet

 

densities

 

accuracy

 

secured

 
sufficient

quotients

 
appearing
 
Oxygen
 

Monoxide

 

Dioxide

 
divide
 

sample

 
insuring
 

stream

 
required