FREE BOOKS

Author's List




PREV.   NEXT  
|<   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176  
177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   >>   >|  
btain perfect combustion with the theoretical amount of air, and an excess may be required, amounting to sometimes double the theoretical supply, depending upon the nature of the fuel to be burned and the method of burning it. The reason for this is that it is impossible to bring each particle of oxygen in the air into intimate contact with the particles in the fuel that are to be oxidized, due not only to the dilution of the oxygen in the air by nitrogen, but because of such factors as the irregular thickness of the fire, the varying resistance to the passage of the air through the fire in separate parts on account of ash, clinker, etc. Where the difficulties of drawing air uniformly through a fuel bed are eliminated, as in the case of burning oil fuel or gas, the air supply may be materially less than would be required for coal. Experiment has shown that coal will usually require 50 per cent more than the theoretical net calculated amount of air, or about 18 pounds per pound of fuel either under natural or forced draft, though this amount may vary widely with the type of furnace, the nature of the coal, and the method of firing. If less than this amount of air is supplied, the carbon burns to monoxide instead of dioxide and its full heat value is not developed. An excess of air is also a source of waste, as the products of combustion will be diluted and carry off an excessive amount of heat in the chimney gases, or the air will so lower the temperature of the furnace gases as to delay the combustion to an extent that will cause carbon monoxide to pass off unburned from the furnace. A sufficient amount of carbon monoxide in the gases may cause the action known as secondary combustion, by igniting or mingling with air after leaving the furnace or in the flues or stack. Such secondary combustion which takes place either within the setting after leaving the furnace or in the flues or stack always leads to a loss of efficiency and, in some instances, leads to overheating of the flues and stack. Table 32 gives the theoretical amount of air required for various fuels calculated from formula (10) assuming the analyses of the fuels given in the table. The process of combustion of different fuels and the effect of variation in the air supply for their combustion is treated in detail in the chapters dealing with the various fuels. TABLE 32 CALCULATED THEORETICAL AMOUNT OF AIR
PREV.   NEXT  
|<   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176  
177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   >>   >|  



Top keywords:

combustion

 

amount

 

furnace

 

theoretical

 
supply
 
carbon
 

monoxide

 

required

 

excess

 

calculated


nature

 

method

 

leaving

 

burning

 

oxygen

 

secondary

 

sufficient

 
unburned
 

source

 

developed


products
 
action
 

temperature

 

chimney

 

diluted

 

excessive

 

extent

 
instances
 

effect

 

variation


process

 
analyses
 

treated

 
detail
 

AMOUNT

 

THEORETICAL

 
CALCULATED
 
chapters
 

dealing

 

assuming


setting

 

igniting

 

mingling

 

formula

 

overheating

 

dioxide

 
efficiency
 

factors

 
irregular
 

dilution