FREE BOOKS

Author's List




PREV.   NEXT  
|<   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161  
162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   >>   >|  
ng the steam causes condensation of a portion of the steam, so that even were the steam dry on entering the turbine, it would contain water on leaving the turbine. By superheating the steam the water that exists in the low pressure stages of the turbine may be reduced to an amount that will not cause trouble. Again, if saturated steam contains moisture, the effect of this moisture on the economy of a steam turbine is to reduce the economy to a greater extent than the proportion by weight of water, one per cent of water causing approximately a falling off of 2 per cent in the economy. The water rate of a large economical steam turbine with superheated steam is reduced about one per cent, for every 12 degrees of superheat up to 200 degrees Fahrenheit of superheat. To superheat one pound of steam 12 degrees requires about 7 B. t. u. and if 1050 B. t. u. are required at the boiler to evaporate one pound of the saturated steam from the temperature of the feed water, the heat required for the superheated steam would be 1057 degrees. One per cent of saving, therefore, in the water consumption would correspond to a net saving of about one-third of one per cent in the coal consumption. On this basis 100 degrees of superheat with an economical steam turbine would result in somewhat over 3 per cent of saving in the coal for equal boiler efficiencies. As a boiler with a properly designed superheater placed within the setting is more economical for a given capacity than a boiler without a superheater, the minimum gain in the coal consumption would be, say, 4 or 5 per cent as compared to a plant with the same boilers without superheaters. The above estimates are on the basis of a thoroughly dry saturated steam or steam just at the point of being superheated or containing a few degrees of superheat. If the saturated steam is moist, the saving due to superheat is more and ordinarily the gain in economy due to superheated steam, for equal boiler efficiencies, as compared with commercially dry steam is, say, 5 per cent for each 100 degrees of superheat. Aside from this gain, as already stated, superheated steam prevents erosion of the turbine buckets that would be caused by water in the steam, and for the reasons enumerated it is standard practice to use superheated steam for turbine work. The less economical the steam motor, the more the gain due to superheated steam, and where there are a number of auxiliaries that are run with s
PREV.   NEXT  
|<   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161  
162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   >>   >|  



Top keywords:

turbine

 

degrees

 

superheat

 

superheated

 
boiler
 
saving
 

saturated

 

economical

 

economy

 

consumption


reduced

 

required

 

compared

 

moisture

 

efficiencies

 

superheater

 

auxiliaries

 
designed
 

properly

 

setting


minimum
 
capacity
 

estimates

 

stated

 

prevents

 

erosion

 

commercially

 
buckets
 

caused

 

practice


standard

 
reasons
 

enumerated

 
ordinarily
 

superheaters

 

number

 
boilers
 
leaving
 

weight

 

proportion


greater

 

extent

 

causing

 

approximately

 

falling

 

reduce

 
amount
 

pressure

 
trouble
 

effect