FREE BOOKS

Author's List




PREV.   NEXT  
|<   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146  
147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   >>   >|  
steam at boiler pressure, L = latent heat of steam at boiler pressure, h = total heat of steam at reduced pressure after passing orifice, t_{1} = temperature of saturated steam at the reduced pressure, t_{2} = temperature of steam after expanding through the orifice in the disc, 0.47 = the specific heat of saturated steam at atmospheric pressure, x = proportion by weight of moisture in steam. The difference in B. t. u. in a pound of steam at the boiler pressure and after passing the orifice is the heat available for evaporating the moisture content and superheating the steam. Therefore, H - h = xL + 0.47(t_{2} - t_{1}) H - h - 0.47(t_{2} - t_{1}) or x = --------------------------- (4) L Almost invariably the lower pressure is taken as that of the atmosphere. Under such conditions, h = 1150.4 and t_{1} = 212 degrees. The formula thus becomes: H - 1150.4 - 0.47(t_{2} - 212) x = ------------------------------ (5) L For practical work it is more convenient to dispense with the upper thermometer in the calorimeter and to measure the pressure in the steam main by an accurate steam pressure gauge. A chart may be used for determining the value of x for approximate work without the necessity for computation. Such a chart is shown in Fig. 15 and its use is as follows: Assume a gauge pressure of 180 pounds and a thermometer reading of 295 degrees. The intersection of the vertical line from the scale of temperatures as shown by the calorimeter thermometer and the horizontal line from the scale of gauge pressures will indicate directly the per cent of moisture in the steam as read from the diagonal scale. In the present instance, this per cent is 1.0. Sources of Error in the Apparatus--A slight error may arise from the value, 0.47, used as the specific heat of superheated steam at atmospheric pressure. This value, however is very nearly correct and any error resulting from its use will be negligible. There is ordinarily a larger source of error due to the fact that the stem of the thermometer is not heated to its full length, to an initial error in the thermometer and to radiation losses. With an ordinary thermometer immersed in the well to the 100 degrees mark, the error when registering 300 degrees would be about 3 degrees and the true temperature be 303 degrees.[19] The steam is evid
PREV.   NEXT  
|<   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146  
147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   >>   >|  



Top keywords:

pressure

 

degrees

 

thermometer

 

moisture

 
orifice
 
temperature
 

boiler

 

calorimeter

 

atmospheric

 

specific


passing

 

reduced

 

saturated

 

superheated

 

diagonal

 

directly

 

pressures

 
present
 

Apparatus

 

slight


Sources
 
instance
 

negligible

 

immersed

 

ordinary

 

registering

 

losses

 
radiation
 

ordinarily

 

larger


horizontal

 
resulting
 

correct

 
source
 

length

 

initial

 
heated
 
atmosphere
 

expanding

 

invariably


conditions

 

formula

 

Almost

 

proportion

 

difference

 

evaporating

 
content
 

Therefore

 
superheating
 

practical