FREE BOOKS

Author's List




PREV.   NEXT  
|<   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171  
172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   >>  
h-pink stain is produced on the paper, which is turned blue on moistening with dilute alkali. The amount of the boric acid radicle may be determined by incinerating 5-10 grammes of soap, extracting with hot dilute acid, filtering, neutralising this solution to methyl orange, and boiling to expel carbon dioxide. After cooling, sufficient pure neutralised glycerine is added to form one-third of the total volume, and the liquid titrated with N/2 caustic soda solution, using phenol-phthalein as indicator. Each c.c. of N/2 NaOH solution corresponds to 0.031 gramme crystallised boric acid, H_{3}BO_{3} or 0.0477 gramme crystallised borax, Na_{2}B_{4}O_{7}.10H_{2}O. LYES. The amounts of caustic alkali (if any), carbonated alkali, and salt present are determined in the manner already described under Alkali and Alkali Salts. The glycerol content is ascertained by taking 2.5 grammes, adding lead subacetate solution, and filtering without increasing the bulk more than is absolutely necessary; the solution is concentrated to about 25 c.c., and the oxidation with bichromate and sulphuric acid conducted as described in the examination of Crude Glycerine. The solution, after oxidation, is made up to 250 c.c., and titrated against standard ferrous ammonium sulphate solution, the formula for the calculation being:-- {0.25 - 2.5} Per cent. of glycerol = { ---} x 40 { n } where n equals the number of c.c. of oxidised lyes required to oxidise the ferrous ammonium sulphate solution. The estimation of actual glycerol in this is necessarily a matter of considerable importance, and a very large number of processes, which are constantly being added to, have been suggested for the purpose. Hitherto, however, only two methods have been generally adopted, _viz._ the acetin and the bichromate processes. Unfortunately the results obtained by these do not invariably agree, the latter, which includes all oxidisable matter as glycerol, giving sometimes considerably higher results, and it has been suggested that a determination should be made by both methods, and the average of the two results considered the true value. This involves a considerable amount of time and trouble, and it will generally be found sufficient in a works laboratory to determine the glycerol by one method only in the ordinary course, reserving the other process for use as a ch
PREV.   NEXT  
|<   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171  
172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   >>  



Top keywords:
solution
 

glycerol

 

alkali

 

results

 

crystallised

 

gramme

 

sufficient

 

considerable

 

caustic

 

processes


titrated
 

Alkali

 
matter
 

number

 

filtering

 

dilute

 

amount

 

ferrous

 

ammonium

 

sulphate


methods

 
suggested
 

generally

 

bichromate

 
determined
 

grammes

 

oxidation

 
purpose
 

constantly

 

Hitherto


oxidised

 

equals

 

formula

 

calculation

 

necessarily

 

importance

 

actual

 

estimation

 

required

 
oxidise

trouble

 
involves
 
average
 

considered

 

laboratory

 

process

 

reserving

 

determine

 

method

 

ordinary