FREE BOOKS

Author's List




PREV.   NEXT  
|<   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111  
112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   >>   >|  
] 11.--_The Nun's Puzzle._ [Illustration] As there are eighteen cards bearing the letters "CANTERBURY PILGRIMS," write the numbers 1 to 18 in a circle, as shown in the diagram. Then write the first letter C against 1, and each successive letter against the second number that happens to be vacant. This has been done as far as the second R. If the reader completes the process by placing Y against 2, P against 6, I against 10, and so on, he will get the letters all placed in the following order:--CYASNPTREIRMBLUIRG, which is the required arrangement for the cards, C being at the top of the pack and G at the bottom. 12.--_The Merchant's Puzzle._ This puzzle amounts to finding the smallest possible number that has exactly sixty-four divisors, counting 1 and the number itself as divisors. The least number is 7,560. The pilgrims might, therefore, have ridden in single file, two and two, three and three, four and four, and so on, in exactly sixty-four different ways, the last manner being in a single row of 7,560. The Merchant was careful to say that they were going over a common, and not to mention its size, for it certainly would not be possible along an ordinary road! To find how many different numbers will divide a given number, N, let N = _a_^p _b_^q _c_^r ..., where _a_, _b_, _c_ ... are prime numbers. Then the number of divisors will be (_p_ + 1) (_q_ + 1) (_r_ + 1) ..., which includes as divisors 1 and N itself. Thus in the case of my puzzle-- 7,560 = 2^3 x 3^3 x 5 x 7 Powers = 3 3 1 1 Therefore 4 x 4 x 2 x 2 = 64 divisors. To find the smallest number that has a given number of divisors we must proceed by trial. But it is important sometimes to note whether or not the condition is that there shall be a given number of divisors _and no more_. For example, the smallest number that has seven divisors and no more is 64, while 24 has eight divisors, and might equally fulfil the conditions. The stipulation as to "no more" was not necessary in the case of my puzzle, for no smaller number has more than sixty-four divisors. 13.--_The Man of Law's Puzzle._ The fewest possible moves for getting the prisoners into their dungeons in the required numerical order are twenty-six. The men move in the following order:--1, 2, 3, 1, 2, 6, 5, 3, 1, 2, 6, 5, 3, 1, 2, 4, 8, 7, 1, 2, 4, 8, 7, 4, 5, 6. As there are never more than one vacant dungeon to be moved into, there can b
PREV.   NEXT  
|<   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111  
112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   >>   >|  



Top keywords:

number

 

divisors

 

puzzle

 

numbers

 

Puzzle

 

smallest

 

Merchant

 

single

 

required

 

vacant


letters

 

letter

 

includes

 

Powers

 

Therefore

 

proceed

 

prisoners

 

dungeons

 
fewest
 

numerical


twenty

 
dungeon
 

smaller

 

condition

 

divide

 

conditions

 

stipulation

 

fulfil

 

equally

 
important

process
 

placing

 

completes

 

reader

 
CYASNPTREIRMBLUIRG
 
arrangement
 
bearing
 

CANTERBURY

 
PILGRIMS
 

eighteen


Illustration

 

circle

 

successive

 

diagram

 

common

 

mention

 

ordinary

 

careful

 

finding

 

counting