FREE BOOKS

Author's List




PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   >>  
2, 3, 4, 5, in succession will show that we may continue this "winding up" process for ever; and as there will always be an unobstructed way (however long and circuitous) from stations B and E to their respective main lines, it is evident that the number of routes for line A alone is infinite. Therefore the number of complete solutions must also be infinite, if railway lines, like other lines, have no breadth; and indeterminate, unless we are told the greatest number of parallel lines that it is possible to construct in certain places. If some clear condition, restricting these "windings up," were given, there would be no great difficulty in giving the number of solutions. With any reasonable limitation of the kind, the number would, I calculate, be little short of two thousand, surprising though it may appear. 81.--_The Eight Clowns._ This is a little novelty in magic squares. These squares may be formed with numbers that are in arithmetical progression, or that are not in such progression. If a square be formed of the former class, one place may be left vacant, but only under particular conditions. In the case of our puzzle there would be no difficulty in making the magic square with 9 missing; but with 1 missing (that is, using 2, 3, 4, 5, 6, 7, 8, and 9) it is not possible. But a glance at the original illustration will show that the numbers we have to deal with are not actually those just mentioned. The clown that has a 9 on his body is portrayed just at the moment when two balls which he is juggling are in mid-air. The positions of these balls clearly convert his figure into the recurring decimal .[.9]. Now, since the recurring decimal .[.9] is equal to 9/9, and therefore to 1, it is evident that, although the clown who bears the figure 1 is absent, the man who bears the figure 9 by this simple artifice has for the occasion given his _figure_ the value of the _number_ 1. The troupe can consequently be grouped in the following manner:-- 7 5 2 4 6 3 8 .[.9] Every column, every row, and each of the two diagonals now add up to 12. This is the correct solution to the puzzle. 82.--_The Wizard's Arithmetic._ This puzzle is both easy and difficult, for it is a very simple matter to find one of the multipliers, which is 86. If we multiply 8 by 86, all we need do is to place the 6 in front and the 8 behind in order to get the correct answer, 688. But the second number is not to be fo
PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   >>  



Top keywords:

number

 

figure

 

puzzle

 

recurring

 

numbers

 

progression

 
simple
 

difficulty

 

squares

 

formed


infinite
 

missing

 

decimal

 

square

 

solutions

 

evident

 

correct

 

convert

 
positions
 

mentioned


original

 
illustration
 

portrayed

 

juggling

 

moment

 
difficult
 

matter

 
multipliers
 

Wizard

 

Arithmetic


multiply

 

answer

 

solution

 

artifice

 

occasion

 

troupe

 

absent

 
grouped
 

diagonals

 

manner


column
 
arithmetical
 

railway

 
complete
 
Therefore
 
parallel
 

construct

 

greatest

 

breadth

 

indeterminate