FREE BOOKS

Author's List




PREV.   NEXT  
|<   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114  
115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   >>   >|  
seventeenth century how an answer may be found in two fractions with a denominator of no fewer than twenty-one figures, not only are all the published answers, by his method, that I have seen inaccurate, but nobody has ever published the much smaller result that I now print. The cubes of (415280564497 / 348671682660) and (676702467503 / 348671682660) added together make exactly nine, and therefore these fractions of a foot are the measurements of the circumferences of the two phials that the Doctor required to contain the same quantity of liquid as those produced. An eminent actuary and another correspondent have taken the trouble to cube out these numbers, and they both find my result quite correct. If the phials were one foot and three feet in circumference respectively, then an answer would be that the cubes of (63284705 / 21446828) and (28340511 / 21446828) added together make exactly 28. See also No. 61, "The Silver Cubes." Given a known case for the expression of a number as the sum or difference of two cubes, we can, by formula, derive from it an infinite number of other cases alternately positive and negative. Thus Fermat, starting from the known case 1^{3} + 2^{3} = 9 (which we will call a fundamental case), first obtained a negative solution in bigger figures, and from this his positive solution in bigger figures still. But there is an infinite number of fundamentals, and I found by trial a negative fundamental solution in smaller figures than his derived negative solution, from which I obtained the result shown above. That is the simple explanation. We can say of any number up to 100 whether it is possible or not to express it as the sum of two cubes, except 66. Students should read the Introduction to Lucas's _Theorie des Nombres_, p. xxx. Some years ago I published a solution for the case of 6 = (17/21)^3 + (37/21)^3, of which Legendre gave at some length a "proof" of impossibility; but I have since found that Lucas anticipated me in a communication to Sylvester. [Illustration] 21.--_The Ploughman's Puzzle._ The illustration shows how the sixteen trees might have been planted so as to form as many as fifteen straight rows with four trees in every row. This is in excess of what was for a long time believed to be the maximum number of rows possible; and though with our present knowledge I cannot rigorously demonstrate that fifteen rows cannot be beaten, I have a strong "pious opinion
PREV.   NEXT  
|<   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114  
115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   >>   >|  



Top keywords:

solution

 

number

 

negative

 

figures

 

result

 

published

 

21446828

 

fifteen

 

phials

 

fundamental


infinite

 

obtained

 

bigger

 

positive

 

348671682660

 

answer

 

fractions

 

smaller

 
Nombres
 

Theorie


denominator

 
Legendre
 

Students

 

explanation

 

simple

 

express

 

Introduction

 

believed

 

maximum

 
excess

beaten
 

strong

 

opinion

 

demonstrate

 
rigorously
 
present
 
knowledge
 

seventeenth

 
century
 

communication


Sylvester

 

Illustration

 

Ploughman

 

anticipated

 

impossibility

 

derived

 

Puzzle

 

illustration

 

straight

 

planted