ntal row; Chang, the artful-looking
batrachian at the end of the fourth row; and Wilhelmina, the fair
creature in the seventh row. George jumps downwards to the second tumbler
in the seventh row; Chang, who can only leap short distances in
consequence of chronic rheumatism, removes somewhat unwillingly to the
glass just above him--the eighth in the third row; while Wilhelmina, with
all the sprightliness of her youth and sex, performs the very creditable
saltatory feat of leaping to the fourth tumbler in the fourth row. In
their new positions, as shown in the accompanying diagram, it will be
found that of the eight frogs no two are in line vertically,
horizontally, or diagonally.
[Illustration]
70.--_Romeo and Juliet._
This is rather a difficult puzzle, though, as the Professor remarked when
Hawkhurst hit on the solution, it is "just one of those puzzles that a
person might solve at a glance" by pure luck. Yet when the solution, with
its pretty, symmetrical arrangement, is seen, it looks ridiculously
simple.
It will be found that Romeo reaches Juliet's balcony after visiting every
house once and only once, and making fourteen turnings, not counting the
turn he makes at starting. These are the fewest turnings possible, and
the problem can only be solved by the route shown or its reversal.
[Illustration]
71.--_Romeo's Second Journey._
[Illustration]
In order to take his trip through all the white squares only with the
fewest possible turnings, Romeo would do well to adopt the route I have
shown, by means of which only sixteen turnings are required to perform
the feat. The Professor informs me that the Helix Aspersa, or common or
garden snail, has a peculiar aversion to making turnings--so much so that
one specimen with which he made experiments went off in a straight line
one night and has never come back since.
72.--_The Frogs who would a-wooing go._
This is one of those puzzles in which a plurality of solutions is
practically unavoidable. There are two or three positions into which four
frogs may jump so as to form five rows with four in each row, but the
case I have given is the most satisfactory arrangement.
[Illustration]
The frogs that have jumped have left their astral bodies behind, in order
to show the reader the positions which they originally occupied. Chang,
the frog in the middle of the upper row, suffering from rheumatism, as
explained above in the Frogs and Tumbl
|