FREE BOOKS

Author's List




PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>  
last, however (though not without much difficulty), I discovered a subtle method for solving all cases, and have written out schedules for every number up to 25 inclusive. The case of 11 has been solved also by W. Nash. Perhaps the reader will like to try his hand at 13. He will find it an extraordinarily hard nut. The solutions for all cases up to 12 inclusive are given in _A. in M._, pp. 205, 206. 91.--_The Five Tea Tins._ There are twelve ways of arranging the boxes without considering the pictures. If the thirty pictures were all different the answer would be 93,312. But the necessary deductions for cases where changes of boxes may be made without affecting the order of pictures amount to 1,728, and the boxes may therefore be arranged, in accordance with the conditions, in 91,584 different ways. I will leave my readers to discover for themselves how the figures are to be arrived at. 92.--_The Four Porkers._ The number of ways in which the four pigs may be placed in the thirty-six sties in accordance with the conditions is seventeen, including the example that I gave, not counting the reversals and reflections of these arrangements as different. Jaenisch, in his _Analyse Mathematique au jeu des Echecs_ (1862), quotes the statement that there are just twenty-one solutions to the little problem on which this puzzle is based. As I had myself only recorded seventeen, I examined the matter again, and found that he was in error, and, doubtless, had mistaken reversals for different arrangements. Here are the seventeen answers. The figures indicate the rows, and their positions show the columns. Thus, 104603 means that we place a pig in the first row of the _first_ column, in no row of the _second_ column, in the fourth row of the _third_ column, in the sixth row of the _fourth_ column, in no row of the _fifth_ column, and in the third row of the _sixth_ column. The arrangement E is that which I gave in diagram form:-- A. 104603 B. 136002 C. 140502 D. 140520 E. 160025 F. 160304 G. 201405 H. 201605 I. 205104 J. 206104 K. 241005 L. 250014 M. 250630 N. 260015 O. 261005 P. 261040 Q. 306104 It will be found that forms N and Q are semi-symmetrical with regard to the centre, and therefore give only two arrangements each by reversal and reflection; that form H is quarter-symmetrical, and gives only four arrangements; while all the fourteen others yield by re
PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>  



Top keywords:

column

 

arrangements

 

seventeen

 

pictures

 

solutions

 

figures

 
conditions
 

accordance

 

thirty

 

fourth


number
 

symmetrical

 

104603

 

inclusive

 

reversals

 

columns

 

puzzle

 

recorded

 
twenty
 

problem


examined

 
matter
 

answers

 

mistaken

 

doubtless

 
positions
 

regard

 
centre
 

306104

 

261040


260015

 

261005

 

fourteen

 

reversal

 

reflection

 

quarter

 

250630

 
250014
 

140502

 

140520


136002
 
arrangement
 

diagram

 
160025
 
206104
 
241005
 

205104

 

160304

 

201405

 

201605