pure accident he cannot say, but
such a thing might have happened. If the reader tries to make eleven dots
on a sheet of paper so that there shall be seven rows of dots with four
dots in every row, he will find some difficulty; but the captain's
alleged grouping of the bears is quite possible. Can you discover how
they were arranged?
86.--_The English Tour._
[Illustration]
This puzzle has to do with railway routes, and in these days of much
travelling should prove useful. The map of England shows twenty-four
towns, connected by a system of railways. A resident at the town marked A
at the top of the map proposes to visit every one of the towns once and
only once, and to finish up his tour at Z. This would be easy enough if
he were able to cut across country by road, as well as by rail, but he is
not. How does he perform the feat? Take your pencil and, starting from A,
pass from town to town, making a dot in the towns you have visited, and
see if you can end at Z.
87.--_The Chifu-Chemulpo Puzzle._
Here is a puzzle that was once on sale in the London shops. It represents
a military train--an engine and eight cars. The puzzle is to reverse the
cars, so that they shall be in the order 8, 7, 6, 5, 4, 3, 2, 1, instead
of 1, 2, 3, 4, 5, 6, 7, 8, with the engine left, as at first, on the side
track. Do this in the fewest possible moves. Every time the engine or a
car is moved from the main to the side track, or _vice versa_, it counts
a move for each car or engine passed over one of the points. Moves along
the main track are not counted. With 8 at the extremity, as shown, there
is just room to pass 7 on to the side track, run 8 up to 6, and bring
down 7 again; or you can put as many as five cars, or four and the
engine, on the siding at the same time. The cars move without the aid of
the engine. The purchaser is invited to "try to do it in 20 moves." How
many do you require?
[Illustration]
88.--_The Eccentric Market-woman._
Mrs. Covey, who keeps a little poultry farm in Surrey, is one of the most
eccentric women I ever met. Her manner of doing business is always
original, and sometimes quite weird and wonderful. She was once found
explaining to a few of her choice friends how she had disposed of her
day's eggs. She had evidently got the idea from an old puzzle with which
we are all familiar; but as it is an improvement on it, I have no
hesitation in presenting it to my readers. She related tha
|