FREE BOOKS

Author's List




PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  
concourse of circumstances, but, in strictness, it would not be impossible. The principle would only be a law of probability. Yet this probability is all the greater the more considerable is the number of molecules itself. In the phenomena habitually dealt with, this number is such that, practically, the variation of entropy in a constant sense takes, so to speak, the character of absolute certainty. But there may be exceptional cases where the complexity of the system becomes insufficient for the application of the principle of Carnot;-- as in the case of the curious movements of small particles suspended in a liquid which are known by the name of Brownian movements and can be observed under the microscope. The agitation here really seems, as M. Gouy has remarked, to be produced and continued indefinitely, regardless of any difference in temperature; and we seem to witness the incessant motion, in an isothermal medium, of the particles which constitute matter. Perhaps, however, we find ourselves already in conditions where the too great simplicity of the distribution of the molecules deprives the principle of its value. M. Lippmann has in the same way shown that, on the kinetic hypothesis, it is possible to construct such mechanisms that we can so take cognizance of molecular movements that _vis viva_ can be taken from them. The mechanisms of M. Lippmann are not, like the celebrated apparatus at one time devised by Maxwell, purely hypothetical. They do not suppose a partition with a hole impossible to be bored through matter where the molecular spaces would be larger than the hole itself. They have finite dimensions. Thus M. Lippmann considers a vase full of oxygen at a constant temperature. In the interior of this vase is placed a small copper ring, and the whole is set in a magnetic field. The oxygen molecules are, as we know, magnetic, and when passing through the interior of the ring they produce in this ring an induced current. During this time, it is true, other molecules emerge from the space enclosed by the circuit; but the two effects do not counterbalance each other, and the resulting current is maintained. There is elevation of temperature in the circuit in accordance with Joule's law; and this phenomenon, under such conditions, is incompatible with the principle of Carnot. It is possible--and that, I think, is M. Lippmann's idea--to draw from his very ingenious criticism an objection to the kinetic th
PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  



Top keywords:

Lippmann

 
molecules
 

principle

 

temperature

 

movements

 

magnetic

 

particles

 

interior

 
oxygen
 
circuit

Carnot

 

kinetic

 
mechanisms
 

conditions

 

molecular

 
current
 

matter

 

probability

 

number

 
impossible

constant

 

finite

 
considers
 

dimensions

 

copper

 

spaces

 

Maxwell

 

purely

 
hypothetical
 
devised

celebrated

 

apparatus

 

considerable

 

larger

 

greater

 

suppose

 

partition

 

incompatible

 

phenomenon

 

concourse


elevation

 

accordance

 

criticism

 
objection
 

ingenious

 

maintained

 
strictness
 
During
 

induced

 

produce