FREE BOOKS

Author's List




PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  
o be verified. No general rule was found until M. Van der Waals first enunciated a primary law, viz., that if the pressure, the volume, and the temperature are estimated by taking as units the critical quantities, the constants special to each body disappear in the characteristic equation, which thus becomes the same for all fluids. The words corresponding states thus take a perfectly precise signification. Corresponding states are those for which the numerical values of the pressure, volume, and temperature, expressed by taking as units the values corresponding to the critical point, are equal; and, in corresponding states any two fluids have exactly the same properties. M. Natanson, and subsequently P. Curie and M. Meslin, have shown by various considerations that the same result may be arrived at by choosing units which correspond to any corresponding states; it has also been shown that the theorem of corresponding states in no way implies the exactitude of Van der Waals' formula. In reality, this is simply due to the fact that the characteristic equation only contains three constants. The philosophical importance and the practical interest of the discovery nevertheless remain considerable. As was to be expected, numbers of experimenters have sought whether these consequences are duly verified in reality. M. Amagat, particularly, has made use for this purpose of a most original and simple method. He remarks that, in all its generality, the law may be translated thus: If the isothermal diagrams of two substances be drawn to the same scale, taking as unit of volume and of pressure the values of the critical constants, the two diagrams should coincide; that is to say, their superposition should present the aspect of one diagram appertaining to a single substance. Further, if we possess the diagrams of two bodies drawn to any scales and referable to any units whatever, as the changes of units mean changes in the scale of the axes, we ought to make one of the diagrams similar to the other by lengthening or shortening it in the direction of one of the axes. M. Amagat then photographs two isothermal diagrams, leaving one fixed, but arranging the other so that it may be free to turn round each axis of the co-ordinates; and by projecting, by means of a magic lantern, the second on the first, he arrives in certain cases at an almost complete coincidence. This mechanical means of proof thus dispenses with laborious ca
PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  



Top keywords:

diagrams

 

states

 

taking

 

values

 

constants

 

critical

 

volume

 

pressure

 
temperature
 

reality


verified

 

fluids

 

isothermal

 

characteristic

 

Amagat

 

equation

 

possess

 
bodies
 

Further

 

method


referable
 

scales

 

present

 

superposition

 

coincide

 

substances

 

aspect

 

translated

 

remarks

 

single


appertaining

 

generality

 

diagram

 
substance
 

arrives

 
lantern
 

complete

 

laborious

 

dispenses

 

coincidence


mechanical

 
projecting
 
photographs
 
leaving
 

direction

 

shortening

 
similar
 

lengthening

 

simple

 

ordinates