FREE BOOKS

Author's List




PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  
erate the importance that should be attributed to the phrase degraded energy. If the heat is not equivalent to the work, if heat at 99 deg. is not equivalent to heat at 100 deg., that means that we cannot in practice construct an engine which shall transform all this heat into work, or that, for the same cold source, the output is greater when the temperature of the hot source is higher; but if it were possible that this cold source had itself the temperature of absolute zero, the whole heat would reappear in the form of work. The case here considered is an ideal and extreme case, and we naturally cannot realize it; but this consideration suffices to make it plain that the classification of energies is a little arbitrary and depends more, perhaps, on the conditions in which mankind lives than on the inmost nature of things. In fact, the attempts which have often been made to refer the principle of Carnot to mechanics have not given convincing results. It has nearly always been necessary to introduce into the attempt some new hypothesis independent of the fundamental hypotheses of ordinary mechanics, and equivalent, in reality, to one of the postulates on which the ordinary exposition of the second law of thermodynamics is founded. Helmholtz, in a justly celebrated theory, endeavoured to fit the principle of Carnot into the principle of least action; but the difficulties regarding the mechanical interpretation of the irreversibility of physical phenomena remain entire. Looking at the question, however, from the point of view at which the partisans of the kinetic theories of matter place themselves, the principle is viewed in a new aspect. Gibbs and afterwards Boltzmann and Professor Planck have put forward some very interesting ideas on this subject. By following the route they have traced, we come to consider the principle as pointing out to us that a given system tends towards the configuration presented by the maximum probability, and, numerically, the entropy would even be the logarithm of this probability. Thus two different gaseous masses, enclosed in two separate receptacles which have just been placed in communication, diffuse themselves one through the other, and it is highly improbable that, in their mutual shocks, both kinds of molecules should take a distribution of velocities which reduce them by a spontaneous phenomenon to the initial state. We should have to wait a very long time for so extraordinary a
PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  



Top keywords:
principle
 

source

 

equivalent

 

ordinary

 
mechanics
 

Carnot

 
probability
 

temperature

 
physical
 
phenomena

entire

 

remain

 

irreversibility

 

interesting

 

subject

 
traced
 
mechanical
 

interpretation

 

Looking

 
viewed

matter

 

theories

 

partisans

 

aspect

 

Planck

 

kinetic

 

Professor

 

question

 
Boltzmann
 
forward

entropy

 
shocks
 

mutual

 

molecules

 

highly

 

improbable

 

distribution

 
initial
 

phenomenon

 
velocities

reduce

 

spontaneous

 

diffuse

 
communication
 
presented
 

extraordinary

 

maximum

 

numerically

 

configuration

 

system