FREE BOOKS

Author's List




PREV.   NEXT  
|<   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92  
93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>   >|  
g different bodies which happen to be in the same conditions of temperature and pressure, but in very different conditions as regards their critical points. From the experimental point of view, M. Amagat has been able, with extreme skill, to conquer the most serious difficulties. He has managed to measure with precision pressures amounting to 3000 atmospheres, and also the very small volumes then occupied by the fluid mass under consideration. This last measurement, which necessitates numerous corrections, is the most delicate part of the operation. These researches have dealt with a certain number of different bodies. Those relating to carbonic acid and ethylene take in the critical point. Others, on hydrogen and nitrogen, for instance, are very extended. Others, again, such as the study of the compressibility of water, have a special interest, on account of the peculiar properties of this substance. M. Amagat, by a very concise discussion of the experiments, has also been able to definitely establish the laws of compressibility and dilatation of fluids under constant pressure, and to determine the value of the various coefficients as well as their variations. It ought to be possible to condense all these results into a single formula representing the volume, the temperature, and the pressure. Rankin and, subsequently, Recknagel, and then Hirn, formerly proposed formulas of that kind; but the most famous, the one which first appeared to contain in a satisfactory manner all the facts which experiments brought to light and led to the production of many others, was the celebrated equation of Van der Waals. Professor Van der Waals arrived at this relation by relying upon considerations derived from the kinetic theory of gases. If we keep to the simple idea at the bottom of this theory, we at once demonstrate that the gas ought to obey the laws of Mariotte and of Gay-Lussac, so that the characteristic equation would be obtained by the statement that the product of the number which is the measure of the volume by that which is the measure of the pressure is equal to a constant coefficient multiplied by the degree of the absolute temperature. But to get at this result we neglect two important factors. We do not take into account, in fact, the attraction which the molecules must exercise on each other. Now, this attraction, which is never absolutely non-existent, may become considerable when the molecules are drawn clos
PREV.   NEXT  
|<   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92  
93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>   >|  



Top keywords:
pressure
 

measure

 
temperature
 

equation

 
account
 

Others

 

compressibility

 
theory
 

experiments

 

number


constant
 

molecules

 

Amagat

 

critical

 

bodies

 
conditions
 

volume

 
attraction
 
kinetic
 

derived


famous

 

appeared

 

considerations

 

arrived

 

Professor

 

manner

 

celebrated

 

relation

 

satisfactory

 

brought


relying
 

production

 

statement

 
exercise
 

important

 

factors

 

considerable

 

absolutely

 
existent
 
neglect

result

 

Mariotte

 
Lussac
 

bottom

 

demonstrate

 

characteristic

 

degree

 

absolute

 

multiplied

 

coefficient