FREE BOOKS

Author's List




PREV.   NEXT  
|<   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26  
27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   >>  
shake for a balance pivot; multiply it by 2 1/4 and we obtain the thickness for the spring detent of a pocket chronometer, which is about 1/3 the thickness of a human hair. The metric system of measurement is used in all the watch factories of Switzerland, France, Germany, and the United States, and nearly all the lathe makers number their chucks by it, and some of them cut the leading screws on their slide rests to it. In any modern work on horology of value, the metric system is used. Skilled horologists use it on account of its _convenience_. The millimeter is a unit which can be handled on the small parts of a watch, whereas the inch must always be divided on anything smaller than the plates. Equally as fine gauges can be and are made for the inch as for the metric system, and the inch is decimally divided, but we require another decimal point to express our measurement. Metric gauges can now be procured from the material shops; they consist of tenth measures, verniers and micrometers; the finer ones of these come from Glashutte, and are the ones mentioned by Grossmann in his essay on the lever escapement. Any workman who has once used these instruments could not be persuaded to do without them. No one can comprehend the geometrical principles employed in escapements without a knowledge of angles and their measurements, therefore we deem it of sufficient importance to at least explain what a degree is, as we know for a fact, that young workmen especially, often fail to see how to apply it. Every circle, no matter how large or small it may be, contains 360deg.; a degree is therefore the 360th part of a circle; it is divided into minutes, seconds, thirds, etc. To measure the _value_ of a degree of any circle, we must multiply the diameter of it by 3.1416, which gives us the circumference, and then divide it by 360. It will be seen that it depends on the size of that circle or its radius, as to the value of a degree in any _actual_ measurement. To illustrate; a degree on the earth's circumference measures 60 geographical miles, while measured on the circumference of an escape wheel 7.5 mm. in diameter, or as they would designate it in a material shop, No. 7 1/2, it would be 7.5 x 3.1416 / 360 = .0655 mm., which is equal to the breadth of an ordinary human hair; it is a degree in both cases, but the difference is very great, therefore a degree cannot be associated with any actual measurement until the r
PREV.   NEXT  
|<   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26  
27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   >>  



Top keywords:

degree

 
circle
 
measurement
 

system

 
metric
 
divided
 
circumference
 

actual

 

gauges

 

diameter


measures
 

material

 

thickness

 

multiply

 
360deg
 
chronometer
 

minutes

 

thirds

 

detent

 
spring

measure
 

pocket

 

seconds

 

matter

 
workmen
 

explain

 

importance

 
divide
 

breadth

 
ordinary

balance
 

designate

 

difference

 

depends

 

radius

 
sufficient
 

obtain

 

illustrate

 

measured

 
escape

geographical

 

measurements

 

number

 

makers

 
Equally
 

plates

 

smaller

 
decimally
 

express

 

Metric