FREE BOOKS

Author's List




PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   >>  
noying stoppages, often characterized by the watch starting when taken from the pocket. The action is very important and is generally divided into impulse and safety action, although we think we ought to divide it into three, namely, by adding that of the unlocking action. We will first of all consider the impulse and unlocking actions, because we cannot intelligently consider the one without the other, as the ruby pin and the slot in the fork are utilized in each. The ruby pin, or strictly speaking, the "impulse radius," is a lever arm, whose length is measured from the center of the balance staff to the face of the ruby pin, and is used, firstly, as a power or transmitting lever on the acting or geometrical length of the fork (_i. e._, from the pallet center to the beginning of the horn), and which at the moment is a resistance lever, to be utilized in unlocking the pallets. After the pallets are unlocked the conditions are reversed, and we now find the lever fork, through the pallets, transmitting power to the balance by means of the impulse radius. In the first part of the action we have a short lever engaging a longer one, which is an advantage. See Fig. 14, where we have purposely somewhat exaggerated the conditions. A'X represents the impulse radius at present under discussion, and AW the acting length of the fork. It will be seen that the shorter the impulse radius, or in other words, the closer the ruby pin is to the balance staff and the longer the fork, the easier will the unlocking of the pallets be performed, but this entails a great impulse angle, for the law applicable to the case is, that the angles are in the inverse ratio to the radii. In other words, the shorter the radius, the greater is the angle, and the smaller the angle the greater is the radius. We know, though, that we must have as small an impulse angle as possible in order that the balance should be highly detached. Here is one point in favor of a short impulse radius, and one against it. Now, let us turn to the impulse action. Here we have the long lever AW acting on a short one, A'X, which is a disadvantage. Here, then, we ought to try and have a short lever acting on a long one, which would point to a short fork and a great impulse radius. Suppose AP, Fig. 14, is the length of fork, and A'P is the impulse radius; here, then, we favor the impulse, and it is directly in accordance with the theory of the free vibration of the balance, for, a
PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   >>  



Top keywords:

impulse

 

radius

 

balance

 

action

 

length

 

acting

 
unlocking
 

pallets

 
center
 
longer

shorter

 
conditions
 
greater
 

transmitting

 
utilized
 

Suppose

 
closer
 

performed

 
easier
 

directly


present

 
represents
 

vibration

 

discussion

 

accordance

 

theory

 

entails

 

detached

 

highly

 

inverse


angles

 

disadvantage

 

applicable

 
smaller
 
moment
 

adding

 

divide

 

actions

 

intelligently

 

safety


starting

 

characterized

 
noying
 

stoppages

 
generally
 
divided
 

important

 
pocket
 
strictly
 

speaking