FREE BOOKS

Author's List




PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   >>  
gth, it has the good points of both the equidistant and circular pallets, as the unlocking can be performed on the tangent and the lifting arms are of equal length. The wheel, however, is so much heavier as to considerably increase the inertia; also, we have a metal surface of quite an extent sliding over a thin jewel. For practical reasons, therefore, it has been slightly altered in form and is only used in cheap work, being easily made. [Illustration: Fig. 4.] We will now consider the drop, which is a clear loss of power, and, if excessive, is the cause of much irregularity. It should be as small as possible consistent with perfect freedom of action. In so far as _angular_ measurements are concerned, no hard and fast rule can be applied to it, the larger the escape wheel the smaller should be the angle allowed for drop. Authorities on the subject allow 1 1/2deg. drop for the club and 2deg. for the ratchet tooth. It is a fact that escape wheels are not cut perfectly true; the teeth are apt to bend slightly from the action of the cutters. The truest wheel can be made of steel, as each tooth can be successively ground after being hardened and tempered. Such a wheel would require less drop than one of any other metal. Supposing we have a wheel with a primitive diameter of 7.5 mm., what is the amount of drop, allowing 1 1/2deg. by angular measurement? 7.5 x 3.1416 / 360 x 1.5 = .0983 mm., which is sufficient; a hair could get between the pallet and tooth, and would not stop the watch. Even after allowing for imperfectly divided teeth, we require no greater freedom even if the wheel is larger. Now suppose we take a wheel with a primitive diameter of 8.5 mm. and find the amount of drop; 8.5 x 3.1416 / 360 x 1.5 = .1413 mm., or .1413 - .0983 = .043 mm., more drop than the smaller wheel, if we take the same angle. This is a waste of force. The angular drop should, therefore, be proportioned according to the size of the wheel. We wish it to be understood that common sense must always be our guide. When the horological student once arrives at this standpoint, he can _intelligently_ apply himself to his calling. _The Draw._--The draw or draft angle was added to the pallets in order to draw the fork back against the bankings and the guard point from the roller whenever the safety action had performed its function. [Illustration: Fig. 5.] Pallets with draw are more difficult to unlock than those without it, this is in
PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   >>  



Top keywords:
angular
 

action

 

Illustration

 

larger

 

freedom

 

escape

 

smaller

 
primitive
 

allowing

 
require

amount

 

diameter

 

pallets

 

slightly

 

performed

 
points
 

understood

 
proportioned
 

equidistant

 

pallet


tangent

 
unlocking
 

sufficient

 

common

 

suppose

 

greater

 

divided

 
imperfectly
 

circular

 

bankings


roller
 

safety

 
unlock
 

difficult

 

Pallets

 

function

 

horological

 

student

 

arrives

 

measurement


standpoint

 

calling

 

intelligently

 
measurements
 
concerned
 

practical

 
perfect
 

reasons

 

allowed

 

extent