FREE BOOKS

Author's List




PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  
h engines, and known as the equilibrium valve. This valve is represented in fig. 34. It consists substantially of an annulus or bulging cylinder of brass, with a steam-tight face both at its upper and lower edges, at which points it fits accurately upon a stationary seat. This annulus may be raised or lowered without being resisted by the pressure of the steam, and in rotative engines it is usually worked by a cam on the shaft. The expansion cam is put on the shaft in two pieces, which are fastened to each other by means of four bolts passing through lugs, and is fixed to the shaft by keys. A roller at one end of a bell-crank lever, which is connected with the expansion valve, presses against the cam, so that the motion of the lever will work the valve. The roller is kept against the cam by a weight on a lever attached to the same shaft, but a spring is necessary for high speeds. If the cam were concentric with the shaft, the lever which presses upon it would remain stationary, and also the expansion valve; but by the projection of the cam, the end of the lever receives a reciprocating motion, which is communicated to the valve. 199. _Q._--The cam then works the valve? _A._--Yes. The position of the projection of the cam determines the point in relation to the stroke at which the valve is opened, and its circumferential length determines the length of the time during which the valve continues open. The time at which the valve should begin to open is the same under all circumstances, but the duration of its opening varies with the amount of expansion desired. In order to obtain this variable extent of expansion, there are several projections made upon the cam, each of which gives a different degree, or _grade_ as it is usually called, of expansion. These grades all begin at the same point on the cam, but are of different lengths, so that they begin to move the lever at the same time, but differ in the time of returning it to its original position. 200. _Q._--How is the degree of expansion changed? _A._--The change of expansion is effected by moving the roller on to the desired grade; which is done by slipping the lever carrying the roller endways on the shaft or pin sustaining it. 201. _Q._--Are such cams applicable in all cases? _A._--In engines moving at a high rate of speed the roller will be thrown back from the cam by its momentum, unless it be kept against it by means of springs. In some cases I have emp
PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  



Top keywords:

expansion

 
roller
 

engines

 

motion

 

presses

 

moving

 
determines
 
length
 

position

 
desired

degree

 

projection

 

stationary

 

annulus

 

projections

 

lengths

 

grades

 

called

 
extent
 

circumstances


duration

 

opening

 

varies

 

obtain

 
bulging
 

amount

 
variable
 

returning

 

thrown

 
cylinder

applicable

 

momentum

 

springs

 

changed

 

change

 

continues

 
original
 

effected

 

sustaining

 

endways


slipping

 

carrying

 

differ

 

rotative

 
equilibrium
 
connected
 

pressure

 

lowered

 
substantially
 

resisted